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Objective Tumor necrosis factor (TNF) antagonists fall into 2 classes:etanercept (ETA) is a soluble
TNF receptor, while infliximab (INF) and adalimumab (ADA) are monoclonal antibodies against
TNF. All 3 drugs are effective in treating rheumatoid arthritis. However, these agents have been
associated with an increased risk of granulomatous infections, such as tuberculosis and histoplas-
mosis. Several reports indicate that the incidence of granulomatous infections may potentially be
higher in individuals treated with INF than ETA.
Methods We conducted a comprehensive literature search (1966 to 2004) to review the role of
TNF in normal and disease states, and the mechanisms of action of the TNF inhibitors. Specifi-
cally, we searched for possible mechanisms for the apparent increase in granulomatous infections
associated with TNF inhibitors and for reasons that there may be differences between them.
Results Infection may result from a number of differences between ETA and INF or ADA. First,
binding avidities are different, with ETA binding in a 1:1 ratio and INF/ADA binding in 2 to 3:1
ratios. Second, the clearances of ADA, ETA, and INF are different, being about 13 times higher for
ETA than INF or ADA, thus resulting in higher steady-state drug levels for ADA and INF. Also,
the methods of administration are different, intravenously (for INF) versus subcutaneously (for
ETA and ADA), which results in lower peak concentrations for ETA and ADA, potentially
explaining some of the differences in effects on granuloma formation. Third, INF and ADA have
somewhat different mechanisms of action from ETA: INF and ADA are associated with antibody-
mediated cell lysis, while ETA is not; INF may induce apoptosis in some tissues (eg, gastrointes-
tinal [GI] mucosa) while ETA does not—although this is controversial and may not be true at
steady state in synovium, where both drugs seem to cause apoptosis; ETA binds lymphotoxin-!
while INF does not (ETA may thus be more efficient at preventing granuloma formation by this
mechanism than INF); finally, ADA and INF seem to inhibit IFN-" expression (probably indi-
rectly), while ETA does not.
Conclusions There are significant differences between the 2 classes of TNF antagonists in terms of
both their kinetics and mechanisms of action. These differences may help explain the apparent
differences in the incidence of granuloma-dependent infections among them.
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Rheumatoid arthritis (RA) is a chronic systemic in-
flammatory disease that is characterized by the
destruction of the synovial membranes and artic-

ular structures of multiple joints. The inflammation,
swelling, pain, and loss of mobility caused by damage to
the synovium greatly impact the lives of those affected by
the disease. Traditional RA treatments, including nonste-
roidal antiinflammatory agents and corticosteroids, can
reduce the pain associated with RA but do not address the
fundamental disease process. Methotrexate, the most
common disease-modifying antirheumatic drug used to
treat RA, is effective but is associated with occasional sig-
nificant side effects (1). The discovery that high levels of
tumor necrosis factor (TNF) may contribute to or medi-
ate chronic inflammation and joint destruction in RA
heralded a new era of targeted and highly effective biolog-
ics for RA and other chronic inflammatory diseases.

The TNF antagonists fall into 2 classes: monoclonal
antibodies and soluble receptors. Etanercept (Enbrel®,
Thousands Oaks, CA) is a soluble TNF receptor, while
infliximab (Remicade®, Horsham, PA) and adalimumab
(Humira®, Abbott Park, ILL) are monoclonal antibodies
against TNF. These agents are now widely used for the
treatment of RA and other inflammatory diseases. As of
December 2004, more than 250,000 patients worldwide
had been treated with etanercept (2) and more than
500,000 had been treated with infliximab (3). As of Au-
gust 31, 2004, 10,050 patients with RA had enrolled in
adalimumab clinical trials worldwide (4). TNF antago-
nists improve signs and symptoms, inhibit the progres-
sion of structural damage, and impact functional out-
comes in patients with RA (5-10). Etanercept, in clinical
trials, has these effects in patients with psoriatic arthritis,
ankylosing spondylitis, and juvenile RA (7,9,10); inflix-
imab has been approved for the treatment of ankylosing
spondylitis and psoriatic arthritis, and adalimumab is be-
ing tested in these diseases (7,9,10). Infliximab has effi-
cacy in treating Crohn’s disease, while etanercept does
not, at the doses used for RA (11,12).

TNF plays a vital role in granuloma formation and
maintenance. Recent studies have reported an increase in
granulomatous infections, such as tuberculosis (TB) and

histoplasmosis, associated with the use of TNF antago-
nists (4,13-25). Several of these studies have indicated the
possibility of a higher incidence of granulomatous infec-
tions associated with the use of infliximab than with et-
anercept, although the risk of infection is elevated with
etanercept use as well (13,16). This difference may be due
in part to the different mechanisms of action or pharma-
cokinetics of monoclonal antibodies versus the soluble
receptor.

In this article, we review the role of TNF in normal and
disease states. We also provide an overview of the phar-
macokinetic profiles and possible mechanisms of action of
infliximab, adalimumab, and etanercept, paying particu-
lar attention to the relationship between these drugs and
granuloma formation and maintenance.

METHODS

We conducted several comprehensive reviews of the liter-
ature, searching the PubMed database to identify English-
language articles from 1966 to 2004. We searched for
articles on the role of TNF in normal and disease states
using the terms tumor necrosis factor, infliximab, etaner-
cept, adalimumab, rheumatoid arthritis, and Crohn’s dis-
ease. This search was supplemented using terms related to
pharmacokinetic profiles and possible mechanisms of ac-
tion, including pharmacokinetics, avidity, mechanism,
complement, transmembrane, and apoptosis. Granuloma-
tous disease was included using the terms adverse effects,
granuloma, granulomatous infection, tuberculosis, histoplas-
mosis, coccidioidomycosis, and listeriosis. Titles and ab-
stracts were reviewed for articles addressing the role of
TNF and potential relationships between the pharmaco-
kinetics and/or mechanism of action of TNF inhibitors
and the occurrence of granulomatous infections. Hand
searches of bibliographies from relevant articles and re-
views, as well as consultations with expert rheumatolo-
gists, yielded additional references.

RESULTS

TNF in Normal and in Disease States
A wide variety of cells produce TNF, including macro-
phages, CD4! and CD8! T-cells, B-cells, natural killer
cells, neutrophils, endothelial cells, smooth muscle cells,
osteoclasts, and fibroblasts. However, the primary sources
of TNF in immunity and in inflammatory diseases are
cells of the monocyte/macrophage lineage, which secrete
TNF in response to exogenous molecules such as lipo-
polysaccharide and endogenous mediators such as inter-
leukin (IL) 1# and interferon (IFN) ".

TNF is expressed on the cell surface and released in
soluble form following cleavage of its membrane-anchor-
ing domains (26). A potent proinflammatory cytokine,
TNF stimulates release of IFN", IL-1#, IL-6, IL-8, and
granulocyte-macrophage colony stimulating factor and

Abbreviations

AERS adverse event reporting system
Fc crystallizable fragment (of the antibody)
IBD inflammatory bowel disease
IFN interferon
IL interleukin
MCP monocyte chemoattractant protein
MIP macrophage-inflammatory protein
RA rheumatoid arthritis
RANTES regulated on activation, normal T-cell

expressed and secreted
TB tuberculosis
TNF tumor necrosis factor
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induces production of endothelial adhesion molecules
(intercellular adhesion molecule-1, vascular adhesion
molecule-1, E-selectin) and chemokines (monocyte che-
moattractant protein [MCP]-1, macrophage-inflamma-
tory protein [MIP]-2, and MIP-1!), leading to transport
and directed migration of leukocytes (27). In its role in
resistance to infections, TNF activates neutrophils and
enhances macrophage and natural killer cell killing.

In healthy humans, circulating TNF is not detectable
("10 fg/mL). However, in patients with inflammatory
diseases such as RA (28), inflammatory bowel disease
(IBD) (29), and bacterial meningitis (30), TNF can be
readily detected. In septic shock, plasma TNF levels can
be extremely high, in the range of 50 to 100 pg/mL or
higher (30,31). Increased expression of TNF has been
noted in the synovium of RA patients (32). In IBD pa-
tients, elevated TNF levels are also found in both serum
and stool, and other proinflammatory cytokines have
been detected in the colonic mucosa (29,33). The central
pathogenic role of TNF in these and other inflammatory
diseases is supported by the clinical efficacy of TNF
antagonists.

TNF and the Granulomatous
Response to Infection
Granulomas are cell collections composed of epithelioid
macrophages and multinucleated giant cells that are en-

circled by lymphocytes and frequently have necrotic de-
bris in their centers (34). They result from the protective
mechanisms expressed when acute inflammatory pro-
cesses cannot destroy invading agents (35). Granuloma
formation is not restricted to a single type of pathogen, as
the granulomatous responses to mycobacteria, fungi, pro-
tozoa, and some bacteria show important similarities. The
process, which is best understood in the case of Mycobac-
terium tuberculosis, is depicted in Fig. 1. The initial cyto-
kine response to M. tuberculosis (TNF, IL-12, other cyto-
kines, and chemokines) is triggered by direct interactions
of mycobacterial proteins and lipoproteins with toll-like
receptors of lung macrophages (36,37). The cascade of
events that follows serves first to stimulate a response
comprising neutrophils and natural killer cells (38). In
most individuals, however, this initial innate immune re-
sponse is insufficient to control mycobacterial replication.
As a result, spread of the infection to regional lymph
nodes and transient hematogenous dissemination com-
monly occur before the infection is ultimately contained
by an adaptive immune response, composed of "$ T-cells,
CD1-restricted cells, and later, CD4! and CD8! T-
cells (39-43). The sequential migration of these cells to
the site of infection results in the formation of a mature
granuloma.

TNF plays an essential role in this process. Animal
models demonstrate that TNF deficiency increases sus-

Figure 1 Granuloma formation in M. tuberculosis infection. Left panel: Mycobacterial components interact with toll-like
receptors on macrophages triggering the production of TNF. Center panel: Secreted TNF binds to TNF receptors on endothelial
cells inducing expression of adhesion molecules and chemokines leading T-cells and monocytes to leave the circulation and to
migrate toward the site of infection. T-cells recognize infected cells and are stimulated with TNF leading to release of IFN-" and
the induction of the macrophage intracellular killing machinery. Right panel: Infected macrophages may fuse to form giant cells.
A mature granuloma is formed with epithelioid macrophages and T-cells, effectively isolating the infection from the host.
Continued secretion of TNF is required to maintain granuloma architecture.
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ceptibility to granulomatous infections (44-47). Neutral-
ization of TNF decreases both the recruitment of inflam-
matory cells and the formation of granulomas (27,48).
TNF induces chemokines including MIP-1!, MIP-1#,
MIP-2, MCP-1, and “regulated on activation, normal
T-cell expressed and secreted” (RANTES), and subse-
quent leukocyte recruitment to infected organs (27). In
addition to its role in initial cellular recruitment, TNF is
also required for establishing and maintaining granuloma
architecture: it regulates the tight association between
macrophages and lymphocytes within granulomas (27).

In the case of M. tuberculosis, bactericidal mechanisms,
such as those involving production of nitric oxide, appear
to be poorly expressed by human cells (49). Instead, hu-
man mycobacterial immunity reflects growth inhibitory
mechanisms requiring direct cell contact and activation
(50-52). As a result, the continuous, lifelong recruitment
of antigen-specific T-cells is required to maintain granu-
lomas and prevent progression of latent infection to active
disease.

TNF Antagonists and
Granulomatous Infections
A number of granulomatous infections, including those
due to M. tuberculosis (4,13,17,21,22,24,25), His-
toplasma capsulatum (16,18), Cryptococcus neoformans
(19,24,25), Coccidioides immitis (24,25,53), Aspergillus
(20,24,25), and Listeria monocytogenes (14,15,24,25,
54,55), have been reported in association with the use of
TNF antagonists. Early studies done with adalimumab
suggested a dose–response relationship with the occur-
rence of TB (8). Patients who developed active TB were
receiving higher doses than the licensed dose of 40 mg
every other week. Reducing the treatment dose and
screening for the presence of latent TB reduced the fre-
quency of active TB to 1 to 2 cases in the next approxi-
mately 2500 patients, although it did not eliminate the
occurrence of TB completely (23).

While it is difficult to make firm conclusions due to
potential biases inherent in the databases used, passive
surveillance studies have indicated the possibility of a
higher incidence of TB associated with the use of in-
fliximab than with etanercept (4,13,22-25,56,57).
One study analyzed all postmarketing infliximab-re-
lated TB reports received through the Food and Drug
Administration’s (FDA) Adverse Event Reporting Sys-
tem (AERS) from the licensure of infliximab in 1998 to
May 29, 2001; the authors concluded that the rate of
reported TB cases among infliximab-treated patients
was numerically, but not statistically, higher than the
available background rates (13). More recently, results
from an analysis of reports from a European surveil-
lance database supported these findings (57). A review
of the AERS from November 1998 to March 2002
revealed 25 cases of TB in etanercept-treated RA pa-
tients in the US for an estimated rate of 10/100,000

patient-years of exposure (24,25). Based on patients
identified from the National Data Bank for Rheumatic
Diseases, Wolfe and coworkers calculated the rate for
TB in patients with RA: (1) on infliximab therapy to be
53 (95% CI 14 to 130)/100,000 and (2) not on TNF
antagonists to be 6.4 (95% CI 1.6 to 34)/100,000 (58).
A consistent observation in all these studies was a high
proportion of extrapulmonary and disseminated
disease.

Other granulomatous infections have also been re-
ported more frequently with infliximab than with etaner-
cept (16,23-25,54). One study analyzed all reports of his-
toplasmosis following infliximab or etanercept therapy
that were received through the AERS from licensure of
the 2 drugs in 1998 to July 2001 (16). Histoplasmosis was
reported in approximately 6/100,000 infliximab-treated
patients and 1/100,000 etanercept-treated patients, sug-
gesting that patients treated with infliximab may have a
higher risk for developing histoplasmosis compared with
patients treated with etanercept. Listeriosis was identified
in 15 patients from the AERS (through December 2001)
(54). Fourteen had received infliximab and 1 had received
etanercept. From May 1998 through February 2003,
Bergstrom and colleagues identified 13 cases of coccid-
ioidomycosis (12 on infliximab and 1 on etanercept) from
5 clinical practices in an endemic area (53).

A comprehensive analysis of the AERS database
identified 15 types of granulomatous infections associ-
ated with the use of infliximab and etanercept specifi-
cally in US patients from 1998 through the third quar-
ter of 2002 (Table 1) (24,25). More cases of
granulomatous infections were reported in infliximab-
treated patients (130/100,000) than in etanercept-
treated patients (60/100,000). In both groups, TB was
the most frequently reported disease, occurring in 54/
100,000 infliximab-treated patients and 28/100,000
etanercept-treated patients. The reported rates of TB
during the first 90 days of anti-TNF treatment were
95/100,000 person-years for infliximab versus
11/100,000 for etanercept. The onset of TB in relation
to duration of etanercept treatment was relatively con-
stant, suggesting acquisition of new disease. The in-
creased rate of infection in patients shortly after start-
ing infliximab therapy is consistent with reactivation of
disease; the decrease in the rate after 90 days indicates a
shift to acquisition of new disease (24,25). Adali-
mumab was not yet approved during the time period of
this study; however, clinical trial data also demonstrate
an association with granulomatous infections. Thir-
teen cases of TB and 6 cases of invasive infections
caused by Histoplasma, Aspergillus, and Nocardia spe-
cies were reported in adalimumab clinical trials.

In addition, Keane and coworkers noted a higher fre-
quency of extrapulmonary TB associated with infliximab-
treated patients than with nontreated patients (13); such
forms of TB are commonly observed in cases of immuno-
suppression (59). Disseminated forms of TB are associ-
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ated with higher mortality and morbidity; examples of
disseminated TB cases observed include lymph-node dis-
ease, peritoneal disease, bone disease, brain abscess, and
central nervous TB such as tuberculous meningitis
(13,59). The atypical presentation of these TB cases result
in their underdiagnosis or late diagnosis, further increas-
ing morbidity and mortality rates (59,60).

Mechanisms of Action of TNF Antagonists
and Their Potential Role in Granulomatous
Infections
Although treatment with any of the 3 TNF antagonists
results in modulation or neutralization of TNF-induced
and regulated biological responses, differences among the
TNF blockers with respect to pharmacokinetics and
mechanism of action may explain the potential risk dif-
ferences for developing granulomatous infections.

Binding Avidity
Etanercept is a dimeric fusion protein that consists of 2
molecules of the extracellular ligand-binding portion of
human TNF receptor 2 attached to the Fc domain of
human IgG1 (61). Infliximab is a chimeric IgG1 mono-
clonal antibody composed of human constant and mu-
rine variable regions (62), whereas adalimumab is a re-
combinant human IgG1 monoclonal antibody (63). Each
infliximab or adalimumab molecule can bind up to 2
TNF molecules; a single TNF homotrimer can bind up to
3 molecules of infliximab or adalimumab (64,65). In con-
trast, etanercept binds to the interface of 2 TNF subunits
in a 1:1 ratio (64). One possible ramification of these

differences in avidity is that it may be easier to titrate TNF
suppression to inhibit inflammation without reducing re-
sistance to infusion by drugs that bind less avidly or less
efficiently (in this case, etanercept). Another ramification
is that the monoclonal antibodies may be more potent,
and effective inhibitors of TNF.

Pharmacokinetics
It is possible that some of the apparent differences in the
incidence of activation of latent TB are due to pharmaco-
kinetic differences among the 3 TNF blocking agents.
Infliximab and adalimumab have similar half-lives, and
longer serum half-lives than etanercept (Table 2) (61).
For example, infliximab can still be detected in the serum
after 8 weeks following a single 3 mg/kg dose (62), and
detectable concentrations of free infliximab have been ob-
served for up to 28 weeks (66). Based on the pharmaco-
kinetic profile of infliximab compared with etanercept,
TNF suppression may be greater and more prolonged
during infliximab treatment than during etanercept treat-
ment. Prolonged inhibition of TNF may produce a
“functional knockout” of macrophage function, with in-
creased susceptibility to infection (conversely, it may also
improve efficacy).

While data are not yet definitive, it may be that there is
a lower incidence of latent TB activation after adali-
mumab (at doses used in the clinic) than infliximab. Be-
cause the terminal half-lives, volumes of distribution, and
clearances of these 2 compounds are approximately equiv-
alent, simple steady-state concentrations would not ac-
count for the difference in latent TB activation as steady-
state concentrations are probably quite similar for these 2
compounds. Beyond obvious differences in bioavailabil-
ity, what pharmacokinetic factor, then, might account for
the difference? Since infliximab is given intravenously and
adalimumab is given subcutaneously, an important differ-
ence might be the difference in peak concentrations. For
example, a higher peak concentration may temporarily
saturate protein binding or, by simple mass action, result

Table 1 Incidence of Granulomatous Infections in US
Patients Treated with Infliximab and Etanercept*24,25

Infection Infliximab† Etanercept‡

N (N/100,000 treated
patients)

Tuberculosis§ 106 (54) 32 (28)
Histoplasmosis§ 37 (19) 3 (2.7)
Atypical mycobacteriosis 22 (11) 7 (6.2)
Candidiasis 20 (10) 6 (5.3)
Aspergillosis 17 (8.6) 7 (6.2)
Listeriosis§ 17 (8.6) 1 (0.88)
Cryptococcosis 10 (5.1) 8 (7.1)
Coccidioidomycosis§ 11 (5.6) 1 (0.88)
Nocardiosis 7 (3.6) 1 (0.88)
Toxoplasmosis 4 (2.0) 0 (0)
Total§ 255 (130) 68 (60)

*As of September 2002. Rates were calculated based on 197,000
and 113,000 treated patients for infliximab and etanercept,
respectively.

†In addition, 1 case each of bartonellosis, legionellosis, lep-
rosy, and pneumocystosis were identified and these are included
in the column total.

‡In addition, 2 cases of salmonellosis were identified and are
included in the column total.

§P % 0.01.

Table 2 Pharmacokinetics of the TNF
Antagonists61–63,66,83,84

Etanercept* Infliximab Adalimumab

Cmax (&g/mL) 1.1 # 0.6 118† 4.7 # 1.6§
Time to Cmax (h) 69 # 34 NA 131 # 56§
Bioavailability 76% 100% 64%§
Clearance (mL/h) 160 # 80 11† 12¶
Volume of

distribution (L)
10.4 3.0 4.7–6.0¶

t1/2 (days) 4.25 # 1.25 8–10‡ 10–20¶

NA: information not available.
*25 mg s.c.
†5 mg/kg i.v.
‡3 to 20 mg/kg i.v.
§40 mg s.c.
¶0.25 to 10 mg/kg i.v.
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in higher concentrations of infliximab than adalimumab
in deeper tissues (eg, within granulomata). If on the other
hand there is also a difference between adalimumab and
etanercept with respect to the incidence of latent TB ac-
tivation (ie, lower incidence with etanercept), then factors
such as clearance, serum half-life, and/or dosing regimens
may play a role rather than peak concentration.

At present the specific role of pharmacokinetic differ-
ences in the activation of latent TB remains speculative.
Ongoing studies may elucidate the role of kinetics and
intermittent TNF suppression on monocytes/macro-
phage activity.

Antibody-Mediated Cell Lysis
Cells coated with antibody isotypes that fix complement
and bind Fc receptors (such as human IgG1) can activate
complement-dependent cytolysis and antibody-depen-
dent cell-mediated cytotoxicity. Infliximab induces com-
plement-dependent cytolysis and antibody-dependent
cell-mediated cytotoxicity in a murine myeloma cell line
expressing membrane-associated TNF (67). Macro-
phages and monocytes are among the cells that express
membrane-associated TNF. The monocytopenia ob-
served in patients following treatment with infliximab
that can persist for weeks following infusion (68) may
reflect direct killing of cells expressing membrane-associ-
ated TNF by infliximab. This has clinical implications
because monocytes are an essential component of granu-
lomas; monocyte elimination might lead to susceptibility
to granulomatous diseases. Adalimumab may have similar
activity because its effector portion is identical to that of
infliximab (IgG1).

Etanercept contains the Fc portion of IgG1, but re-
portedly does not fix complement (69), perhaps be-
cause steric hindrance prevents C1q binding, which
initiates the classical complement cascade. Further-
more, because etanercept binds only single molecules
of TNF, it is unlikely to form aggregates that can acti-
vate complement-dependent cytolysis and antibody-
dependent cell-mediated cytotoxicity.

Induced Apoptosis
Some data suggest a role for infliximab in inducing apo-
ptosis in activated monocytes and T-cells (70). In IBD
patients, infliximab is associated with an unexpectedly
sustained clinical response (11). Assays of intestinal biop-
sies from Crohn’s disease patients taken 24 hours after
infliximab infusion found an increase in apoptotic CD3!
cells (71). The same authors showed that infliximab in-
duced apoptosis in activated but not resting T-cells in
vitro. These results suggest that infliximab may exert its
sustained therapeutic effects in IBD by causing apoptosis
of T-lymphocytes since uncontrolled T-cell activation
plays a central role in IBD pathogenesis. Apoptosis also
has been observed in circulating monocytes from Crohn’s
disease patients following infliximab infusion (72). Re-

cently, Catrina and coworkers demonstrated that both
etanercept and infliximab can induce apoptosis in mono-
cytes and macrophages from patients with RA (73). This
effect was more prominent in cells from the synovial fluid
than from peripheral blood; no such effect was observed
in lymphocytes.

Removal of activated monocytes, macrophages, and
CD4! T-cells might be desirable in chronic inflamma-
tion. However, because these cell types play an essential
role in granuloma formation and maintenance, inflix-
imab-induced apoptosis may lead to more potent and
long-lasting inhibition of the granulomatous response
than expected from TNF neutralization alone.

Lymphotoxin-! Binding
Etanercept differs from the monoclonal antibodies in that
it binds lymphotoxin-!. Lymphotoxin-! binds to TNF
receptors but in contrast to TNF its expression is primar-
ily limited to lymphocytes. Little is known about the bi-
ological role of lymphotoxin-!. Roach and colleagues
have shown that lymphotoxin-!, acting independently of
TNF, plays an essential role in cellular recruitment and
organization of granulomas in M. tuberculosis infection
(74). This evidence suggests that etanercept could exacer-
bate granulomatous diseases more potently than agents
that merely neutralize TNF.

Inhibition of IFN" Production
IFN" is produced by activated T-cells. Like TNF, IFN"
is required for host defenses against mycobacterial infec-
tion (75). Zou and coworkers have examined the effects of
TNF blockers on the frequency of IFN"-producing T-
cells. IFN" expression was decreased by infliximab, but
not by etanercept (76,77). A recent report by Wallis and
coworkers examined the effects of therapeutic concentra-
tions of TNF blockers on antigen-induced IFN" produc-
tion using whole blood culture. Peak and trough concen-
trations of infliximab and adalimumab caused significant
inhibition of IFN", whereas no significant effect was ob-
served with etanercept even at supratherapeutic concen-
trations (78). The mechanism of this effect is apparently
indirect, as neither monoclonal is capable of directly bind-
ing IFN". The possible excess TB risk posed by infliximab
may therefore reflect its ability to inhibit both TNF and
IFN".

DISCUSSION

Monoclonal antibodies and soluble receptors that target
TNF are effective in treating RA and have dramatically im-
proved the lives of people suffering from this disease. How-
ever, there are significant differences between these 2 classes
of TNF inhibitors. Pharmacokinetic differences are pro-
found, with the monoclonal antibodies (infliximab and
adalimumab) demonstrating lower clearances, greater vol-
umes of distribution, and longer half-lives than the soluble
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receptor (etanercept). Furthermore, the intravenous form of
monoclonal antibody (infliximab) has greater bioavailability
and shows much higher peak concentrations. This probably
results in more constant and also higher peak tissue concen-
trations for the monoclonal antibodies, despite the differing
doses and dosing regimens among the 3 drugs. These differ-
ences, in turn, may result in different effects on TNF con-
centrations and different effects on effector cells. Monoclo-
nal antibodies may also eliminate activated T-cells and
monocyte/macrophages directly either by cell lysis or by in-
ducing apoptosis. These differences may explain the greater
efficacy of infliximab in Crohn’s disease on the one hand,
and the seeming trend toward greater susceptibility to gran-
ulomatous infections such as TB with infliximab on the
other. Improved data about tissue kinetics and about the
relative risks of different TNF agents would be valuable, as
would information on relative risks in patients with different
disease states.

To address concerns about increased susceptibility to TB
reactivation or infection, screening for TB exposure with
tuberculin skin testing or newer interferon-based serum tests
(which are available, although not fully validated) (79)
should be performed before beginning therapy with anti-
TNF agents. Anergy is known to occur in patients with RA
or Crohn’s disease, and the possibility of false-negative skin
tests must be taken into consideration. More sensitive and
specific tests for TB are being developed. Activation of latent
TB may be especially difficult to identify in patients treated
with systemic steroids (80-82). Furthermore, screening tests
are not routinely available for latent infection with the other
agents listed in Table 1. Therefore, a high index of suspicion
for granulomatous infections should be maintained in pa-
tients treated with TNF antagonists. For example, prolonged
unexplained malaise, fevers, and weight loss need to be fol-
lowed up, despite negative skin or serum tests or chest radio-
graphs. Development of active granulomatous infection
should prompt immediate discontinuation of anti-TNF an-
tagonists and aggressive diagnostic and therapeutic maneu-
vers to ascertain the extent and virulence of an infection.
While this article seeks to clarify and explain differences
among TNF blocking agents with respect to the most com-
mon granulomatous infection, TB, many questions clearly
remain. We have already mentioned the continuing need to
understand the pharmacokinetic effects of these drugs and
the many pharmacodynamic effects of TNF blocking agents.
Additionally, other host factors (eg, ethnicity, concomitant
diseases, cytokine modulation of responses, other drug inter-
actions) and environmental factors (eg, dose of and virulence
of infecting organisms, host nutrition, socioeconomic fac-
tors) will also need to be elucidated.
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