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Systematic bias in predictions of new drugs’ budget impact: analysis of a
sample of recent US drug launches
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ABSTRACT
Objective: Expectations about the budget impact of new drug launches may affect payer behavior
and ultimately consumer costs. Therefore, we evaluated the accuracy of pre-launch US budget impact
estimates for a sample of new drugs.
Methods: We searched for publicly available budget impact estimates made pre-launch for drugs
approved in the US from 1 September 2010 to 1 September 2015 and compared them to actual sales.
Accuracy was calculated as the ratio of pre-launch estimate to actual sales. Quantitative analyses,
including multivariate regressions, were used to identify factors associated with accuracy.
Results: We identified 25 budget impact estimates: 23 for one of 14 individual drugs and 2 for the cat-
egory of PCSK9 inhibitors. The ratios of predicted to actual budget impact ranged from 0.2 (estimate
was 20% of sales) for secukinumab to 37.5 (estimate was 37.5� sales) for PCSK9 inhibitors. Mean ratio
was 5.5. In multivariate analyses, larger eligible population, more recent estimate year (e.g. 2015 vs.
2012), and being first in class, were associated with statistically significant, greater overestimation of
budget impact.
Conclusions: For every $5.5 of predicted cost, there was $1 of actual cost to the healthcare system.
This study, although based on a small, non-random sample, suggests possible cognitive bias on the
part of the estimators. Overestimating budget impact may lead to early access restrictions, higher
copays, and other changes that ultimately impact patients. Analysts and non-profits should be attuned
to likely sources of error in order to improve their predictions.
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Introduction

Increased spending on prescription drugs is a major health
system concern in the US and world-wide1,2. Although the
rate of increase has moderated recently, spending on prescrip-
tion drugs, adjusted for rebates, reached $310 billion in the
US3 and $800 billion across the Organisation for Economic
Cooperation and Development (OECD) countries. Drug spend-
ing now accounts for 17% of US and 20% of OECD healthcare
expenditures4,5. Widely reported dramatic increases in drug
prices for both branded and generic products have recently
become a particular focus of concern6, although overall price
growth (as opposed to volume growth) for branded drugs
was only 2.8% in the US last year7 and has slowed across most
OECD countries5.

One possible reason for the widespread belief that branded
drug prices are the primary culprit in spending growth is that
new drug launches have recently been accompanied by dra-
matic reports from multiple sources predicting their financial
impact on the US healthcare budget. For example, the non-
profit Institute for Clinical and Economic Review (ICER) has
recently begun publicly releasing analyses of costs and effect-
iveness of some new drugs, along with what they call
“evidence-based calculations of prices”8. Steven Pearson, the
founder of ICER, was widely quoted as saying the new class of

cholesterol lowering medications, proprotein convertase subti-
lisin/kexin type 9 (PCSK9) inhibitors, would cost $20 billion a
year in the US alone9. A New England Journal of Medicine
editorial predicted they would increase annual insurance pre-
miums by $124 for every insured person in the US10. Similarly,
a JAMA editorial predicted a $200–300 per person insurance
premium increase from the introduction of sobusivir for hepa-
titis C virus (HCV) infection, and some analysts predicted US
sales of $3 billion in the first year11.

Budget impact predictions may do more than generate
public alarm. In the US, the reimbursement system for drugs
relies on health plans, which pay more than 40% of US drug
costs12, to constrain spending growth. Health plans wanting
to hold costs in check, thus, often react to drug launches by
increasing cost-sharing and restricting prescriptions.
Commenting on HCV-related spending, Steve Miller, chief
medical officer at Express Scripts, acknowledged that they
were “asking for more prior authorization because we’re hav-
ing to scrutinize every penny we spend now”13. With payers
cutting back, consumers bear an increasing cost burden. The
average out-of-pocket cost for branded drugs is up 25% since
20107. Seventeen percent of branded drugs now require a
patient payment of more than $50 per prescription7, and
spending by individuals with out-of-pocket drug costs of
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$1000 or more now accounts for one-third of overall drug
spending14.

Expectations about the US budget impact of new drug
launches may thus affect consumer cost sharing, and unreal-
istic predictions could cause harm. We therefore evaluated
the accuracy of pre-launch estimates of the US budget
impact of new drugs. Our goal was to determine the accur-
acy of these estimates with the hope of improving such esti-
mates in the future. We hypothesized that policy-focused
agencies would provide more accurate estimates than, for
example, financial analysts.

Methods

We studied the accuracy of budget impact estimates by iden-
tifying publically available estimates made prior to drug
launches, and comparing them to actual drug sales. The sam-
ple items selected for this study were all newly developed
drugs that had been launched (i.e. released for sale) in the
US from 2012 to 2016. To be included, the drug had to have
been launched at least one year before the start of the study
(September 2016) to allow post-launch data to be collected.
Drugs were considered for inclusion if they were first
approved by the Food and Drug Administration (FDA) during
the 5 year period between January 2012 and September
2016. From this list, we attempted to identify a wide variety
of drugs for inclusion, using characteristics such as indication,
population size, and year of approval. For example, we cate-
gorized drugs as treating rare or common conditions, based
on the FDA threshold of 200,000 affected persons in the US,
and included a sample of each. We used a list of therapeutic
areas (e.g. cardiovascular, endocrinology, oncology, anti-
infectives, immunology) and attempted to sample from them
broadly. We identified at least one drug from each year of
our search window. In order not to restrict the analysis to
pre-launch estimates provided by the financial services indus-
try, we specifically searched ICER reports for drugs launched
from 2012 to 2016, excluding those published in the year
after launch or later.

For the selected drugs, we conducted a search for pre-
launch US sales estimates and post-launch actual US sales.
Launch dates were found in various media sources and were
typically close to the FDA approval date. Pre-launch budget
impact estimates were identified using a combination of
keyword terminology and Google search filters. The search
covered the timeframe from a year before the launch date to
the launch date. We searched keywords such as: trade/gen-
eric drug name (e.g., “Opdivo”/”nivolumab”), “estimated
sales”, “predicted sales”, “revenue”, “annual sales”, “sales fore-
cast”, launch year þ1 (e.g. if launch was in 2013, then “2014”
used to identify predictions for the post-launch year),
“report”, “US”, and “United States”. Reports by ICER were indi-
vidually searched for all budget impact estimates related to
recent launches. We used these sales estimates to represent
the broad budget impact of the drug for the entire US popu-
lation. Our goal was to find both formal and informal esti-
mates of budget impact. A formal report was defined as one
that described the methods used to make estimates of sales

or one that aggregated the results of multiple unrelated esti-
mates. Informal reports – reports that did not document their
methods of arriving at their estimates, or included only a sin-
gle estimate – were typically produced by financial analysts
to project share price. Budget impact models of the type
used by payers to estimate the impact of covering a particu-
lar drug were not included, as these often focus on a specific
setting (e.g. one commercial payer, rather than the entire
market), estimate cost on a per-member basis, and include
reductions in other costs (e.g. substitution of one drug for
another, or reduction in utilization associated with medica-
tion use).

We searched for post-launch measures of budget impact
in terms of actual sales using a combination of the specific
keyword terminology and search filters. The timeframe was
from a year following launch (e.g. if launch was in 2013, then
2014 used) to the year of predicted sales estimate (e.g. if a
2013 pre-launch sales estimate identified predicted sales
for 2015, then 2015 used). We searched the keywords trade/
generic drug name (e.g. “Opdivo”/”nivolumab”), pharmaceut-
ical company name (e.g. “Bristol-Myers Squibb”, “Novartis”),
“full year”, “FY”, “quarter 4”, “Q4”, “sales”, “revenue”, “annual
sales”, year following launch (e.g. if launch was in 2013, then
2014 used), year of predicted sales estimate (e.g. if a 2013
pre-launch sales estimate identified predicted sales for 2015,
then 2015 used), “financial”, “report”, “US”, and “United
States”. We looked for full year sales for drugs of interest as
reported in annual or quarterly company financial state-
ments. If a year was identified in the pre-launch sales esti-
mate, we searched the sales report for that same year. For
naltrexone HCl/bupropion HCl, full year sales reports were
not available, and sales between January and September
were used to estimate full year sales.

We identified the size of the eligible population for each
drug by searching published literature and other authorita-
tive estimates, such as those from specialty societies and
government agencies. Typical treatment length was identified
using the prescribing information and/or registration trials.
Drugs were categorized as used to treat cancer based on
their labeled indication and as “first in class” based on the
FDA’s Novel Drugs Summary15–18. Alirocumab and evolocu-
mab were launched nearly simultaneously, and were both
considered first in class.

Analysis

Each item in the sample contained the following information:
1) a pre-launch estimate of budget impact (predicted budget
impact); 2) a measure of the actual estimated year sales
(actual budget impact); 3) an indication of whether the pre-
launch budget impact estimate came from a “formal” or
“informal” source (formal/informal); 4) an estimate of the size
of the population of patients with the target condition; 5) typ-
ical length of treatment with the drug (categorized as
<3 months, 3–6 months, >6 months); 6) whether the drug
was a first-in-class agent; 7) whether the drug was indicated
for cancer treatment; and 8) the calendar year for which the
actual budget impact was reported (sales report year).
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The primary outcome measure was the degree of over
(or under) estimation in terms of the ratio of predicted to
actual budget impact of the drug. Ratios greater than 1
indicate overestimates and ratios less than 1 indicate
underestimates of budget impact. A multiple regression
analysis was performed with the log of the ratio of pre-
dicted to actual impact as the dependent variable. Log
transformation was used to linearize this variable for the
analysis. Six variables were included as the predictors: cred-
ibility of estimate, eligible population, length of typical
treatment, first in class, oncology indication, and reporting
year.

Results

Our initial list included 16 drugs launched in the five year
timeframe of interest. We were able to identify both pre-
and post-launch estimates for 14 drugs (excluding Nucala
and Tresiba) in a variety of indications launched since
2012. There were two PCSK9 inhibitor cholesterol lowering
drugs (alirocumab, evolocumab); three drugs to treat vari-
ous cancers (nivolumab, ceritinib, palbociclib); three for
hepatitis C (ledipasvir/sofosbuvir, sofosbuvir, ombitasvir/pari-
taprevir/ritonavir with dasabuvir); two for obesity manage-
ment (naltrexone HCl/bupropion HCl, liraglutide); and one
each for cystic fibrosis (ivacaftor), heart failure (sacubitril/
valsartan), psoriasis (secukinumab), and diabetes (canagliflo-
zin). We also included estimates of the budget impact of
both PCSK9 inhibitors combined (PCSK9-combined) in our
analysis. There were multiple budget impact estimates for
several drugs: three each for nivolumab and ombitasvir/
paritaprevir/ritonavir with dasabuvir, and two each for evo-
locumab, alirocumab, PCSK9-combined, secukinumab, sacu-
bitril/valsartan, and sofosbuvir. As a result, there were
25 estimates in our sample.

Of these 25, 16 budget impact estimates were for 2016
sales; 7 estimates were for 2015; and 2 estimates were for
2014. Pre-launch estimates were from financial analysts (as
reported by business news services), for-profit consulting
companies (e.g. PwC Health), and a non-profit (ICER)
(Table 1). All estimates were made less than 12 months
before launch. Two estimates (1 for Zykadia, made in 2014,
and 1 for Kalydeco, made in 2012) did not specify the year
for which they were predicting sales, 1 specified the period
as being 2 years after launch, and the remainder predicted
first-year sales. The Predicted Budget Impact of all items in
the sample ranged from a low of $50 million for liraglutide
(2015) to a high of $7.2 billion for PCSK9-combined (2016).
Actual budget impact (sales) was collected for the specific
year predicted. For the two estimates that did not specify a
year, sales data from 2015 was used. Actual budget impact
ranged from a low of $35 million for liraglutide (2015) to a
high of $8.5 billion for sofosbuvir (2014) (Table 1). The ratios
of predicted to actual budget impact ranged from 0.2 for
secukinumab (e.g. predicted sales were 1/5 of actual sales) to
37.5 for PCSK9-combined (predicted sales were 37.5 times
actual) (Figure 1). The overall mean predicted budget impact

for items in our sample was 5.5 times the actual budget
impact of the drug (predicted/actual ratio of 5.5).

In regression analysis, the six predictor variables (credibil-
ity of estimate, size of the population, length of typical treat-
ment, first in class, oncology indication, reporting year)
accounted for 46% of the variance in log of the ratio of pre-
dicted to actual budget impact (R2¼ 0.46). While the overall
regression analysis was not statistically significant (F(7,
17)¼ 2.1; p¼ .10), three of the six variables were statistically
significant predictors of the ratio of predicted to actual
budget impact: population size (t(17)¼�2.27; p¼ .04), first in
class (t(17)¼�2.20; p¼ .04), and sales report year
(t(17)¼ 2.80; p¼ .01). The beta weights for these variables
were as follows: population size, beta¼�2.19; first in-class,
beta¼�3.21; and report year, beta¼ 0.65 (Table 2). These
beta weights indicate the relative strength and direction of
the relationship of the predictor variable to the criterion vari-
able. The sign of the beta weights indicates the direction of
the association between predictor variables and the criterion
variable.

Population size, with a beta weight of �2.19, was nega-
tively related to the ratio of predicted to actual budget
impact. The larger the population, the less the predicted
budget impact overestimated the actual budget impact. The
univariate correlation between these variables was only
0.004, which is neither significant nor negative. The signifi-
cant negative relationship between population size and the
ratio only showed up in this multiple regression analysis. This
suggests that the “true” relationship is “masked” by a con-
founding variable (or variables). Being first in class, with beta
weight of �3.21, was also negatively related to the ratio.
Drugs that were first in class were associated with more over-
estimation of actual budget impact (Figure 2). Note that
while the average ratio of predicted to actual budget impact
was much higher for drugs that were first in class (6.5 vs. 2.2)
the variance of these predictions was much greater (SD 95.5
vs. 4.1). Report year, with a beta of 0.65, was positively
related to the ratio of predicted to actual budget impact.
Thus drugs released later were associated with a greater
overestimation of budget impact.

Since these results are based on data that were clustered
over drug types, we performed a repeated measures regres-
sion analysis in order to determine the sensitivity of these
results to this clustering. We found that taking clustering into
account had little effect on the significance of population
size (p< .0001) and post launch year (p¼ .051) but made first
in class no longer significant (p¼ .15).

Discussion

Pre-launch predictions of the budget impact of newly devel-
oped drugs tend to be considerable overestimates of their
actual sales: for every $5.5 of predicted cost, there is $1 of
actual sales. Overall, ten estimates were off by more than
$1 billion each; 8 of those were overestimates. The multivari-
ate regression analysis produced several noteworthy findings,
although these should be considered exploratory, given the
small non-random sample. First, the smaller the estimated
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Figure 1. Predicted and actual budget impact ratios of 14 evaluated drugs.

Table 2. Results of multiple regression analysis.

Coefficients Standard Error t Stat p Value Beta

Intercept �1243.16 445.19 �2.79 0.01
Estimation Method �0.45 0.30 �1.50 0.15
Population Size 0.00 0.00 �2.27 0.04 �2.19
3–6 Month Treatment Cycle vs. <3 Month Treatment Cycle �4.22 2.21 �1.91 0.07 �2.55
>6 Month Treatment Cycle vs. <3 Month Treatment Cycle �0.31 0.32 �0.97 0.35 �0.25
First in Class vs. Not First in Class �4.57 2.07 �2.20 0.04 �3.21
Cancer Indication vs. Not Cancer Indication �1.09 0.57 �1.92 0.07 �0.72
Sales Report Year 0.62 0.22 2.80 0.01 0.65

Figure 2. Average accuracy of budget impact estimates (in terms of the ratio of predicted to actual budget impact) for drugs that are and are not first in class.
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population, the larger the overestimate of budget impact,
independent of other characteristics. One plausible explan-
ation for this finding is that estimates of the proportion of
the potential population that will actually use the drug vary
with population size. The smaller the potential population,
the more inclined analysts may be to overestimate the pro-
portion of that population who will use the drug. This
hypothesis could be tested by examining whether the pro-
portion of the estimated population that actually ends up
using the drug is inversely related to the estimated treatment
population size. Such an analysis was beyond the scope of
this project, but we hope to undertake such analysis in the
future by extending the current data set.

Although not quite statistically significant in the repeated
measures regression analysis, the results do suggest that the
budget impact of first-in-class drugs is overestimated more
than that of other drugs. We hypothesize that this reflects an
assumption that the market for first-in-class drugs will be a
greater proportion of the eligible population than for other
drugs. We were able to identify two cases in which this
appeared to explain at least a portion of the overestimate,
but most estimates did not provide enough detail to confirm
this hypothesis systematically. This possible upward bias may
be based on an assumption that doctors and patients are
attracted to new treatments. A related hypothesis is that
eventually first-in-class drugs might command a larger mar-
ket share, but it may take longer to reach this share than
estimated. Thus, the larger overestimation would reflect
lower early sales, but in later years, as sales increased, over-
estimation would be reduced. This explanation is supported
by the work of Cha et al.60 who found no difference in the
accuracy of predictions of first-in-class and follow-on drugs
when assessing “peak” sales.

We were surprised that formal sources, using well docu-
mented, quantitative methods, were no more accurate than
those made by informal sources. These sources overesti-
mated budget impact to the same degree as informal sour-
ces. The consistency with which budget impact predictions
overestimate actual cost suggests that predictions may be
biased. An earlier study60 focusing on forecasts of drug sales
concluded that there is a natural tendency to be biased
towards overestimating future sales (and, hence, budget
impact) of newly developed drugs. ICER, a non-profit that
performs and disseminates analyses on effectiveness and
costs9, contributed two estimates that were among the least
accurate, so systematic bias is not restricted to financial ana-
lysts61,62. Availability bias – the tendency to overweight more
readily available information (e.g. drug list price, epidemi-
ology of disease, first-in-class status) and underweight less
available information (e.g. effect of competition on rebates
and discounts, proportion of individuals who actually use the
drug, realistic estimate of prescriber knowledge and adop-
tion)62 may lead health policy research groups to make
inappropriately high estimates of the budget impact of a
newly released drug.

Overestimating budget impact can directly impact patients.
Forty-two state Medicaid fee-for-service programs restricted
sofosbuvir reimbursement63, three-quarters in a manner
inconsistent with recent treatment recommendations64. In the

Medicaid program these restrictions may even be illegal65.
Recent industry reports and Amgen officials suggested that
the “complicated and lengthy” prior authorization required to
prescribe PCSK9 inhibitors has “severely limit[ed]” the avail-
ability of these drugs66,67. Most patient access restrictions are
less well publicized, but are likely driven by similar information
on budget impact. For example, although this is far from prov-
ing causality, Express Scripts 2016 Medicare formulary shows
restrictions (tier 5 or prior authorization) on four of the five
drugs with the highest pre-launch estimates in our study68,
highlighting the importance of accurate estimates to a well
functioning healthcare system.

This study had limitations. First, we focused on the US,
although increased spending on prescription drugs is a major
health system concern globally69. Prescribing restrictions for
high cost medicines may limit patient in Europe, as well as the
US70. An analysis using data from Europe would be inform-
ative, but was beyond the scope of this study. Second, we
used a small, non-random sample comprising 8% of the new
molecular entities launched in the last 5 years13–18,71, and find-
ings could be different with more or different drugs. We
attempted to include drugs for a variety of illness types,
approved in different years, used for varying lengths of time,
and for populations of different sizes. Our goal in using a pur-
posive sampling technique was to be able to explore whether
various drug characteristics were associated with prediction
accuracy. This approach could lead to bias if the sample we
selected was systematically different from the underlying
population. A larger study, using a larger proportion of
approved drugs, or done using a random sampling technique,
would be methodologically superior. Nonetheless, research
done over a longer period with a larger sample generally sup-
ports our conclusions60. Third, most pre-launch estimates do
not state whether they estimated prices before rebates or
other price concessions. Rebates are opaque, but have been
reported to average about 30% of list prices72. Adjusting all
the predicted numbers as though they reported unrebated
cost, the mean (SD) ratio of predicted to actual budget impact
was reduced to 3.8 (6.1), which reduces but does not negate
our findings. Fourth, one actual budget impact (for naltrexone
HCl/bupropion HCl) was estimated based on less than a full
year of sales. Fifth, drugs may take time to reach peak sales. A
follow-up analysis using later sales data might produce a
lower ratio of predicted to actual. Finally, high sales estimates
may themselves lead to stringent controls on access. The
“inaccuracy” we identified may have resulted from the impact
of initial estimates on managed care decision makers. That is,
high sales predictions could drive down sales. Given the retro-
spective nature of this research, we could not determine
whether this mechanism explains our findings. Future studies
should examine formulary decisions resulting from formal and
informal reports of budget impact.

Conclusions

In this sample of newly approved drugs, for every $5.5 of
predicted cost, there was $1 of actual cost to the healthcare
system. Overestimating budget impact may lead to early
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access restrictions, higher copays, and other changes in plan
design that would ultimately impact patients. Our study,
while based on a small, non-random sample, is the first to
identify factors associated with overestimation of cost, includ-
ing being first in class and being used in a smaller popula-
tion. These systematic errors may result from cognitive biases
on the part of the estimators. Analysts and non-profits prom-
ulgating estimates should examine likely sources of error in
order to improve their predictions.
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