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ABSTRACT

Approval of new drugs is increasingly reliant on “surrogate endpoints,” which correlate with but imper-
fectly predict clinical benefits. Proponents argue surrogate endpoints allow for faster approval, but critics
charge they provide inadequate evidence. We develop an economic framework that addresses the value
of improvement in the predictive power, or “quality,” of surrogate endpoints, and clarifies how quality
can influence decisions by regulators, payers, and manufacturers. For example, the framework shows
how lower-quality surrogates lead to greater misalignment of incentives between payers and regulators,
resulting in more drugs that are approved for use but not covered by payers. Efficient price-negotiation in
the marketplace can help align payer incentives for granting access based on surrogates. Higher-quality
surrogates increase manufacturer profits and social surplus from early access to new drugs. Since the
return on better quality is shared between manufacturers and payers, private incentives to invest in

higher-quality surrogates are inefficiently low.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Uncertainty surrounds every healthcare decision, particularly
when it comes to approval and reimbursement decisions for novel
medicines. To reduce this uncertainty, drug developers decide how
much and what kind of information to collect about efficacy, real-
world effectiveness, and side effects, before seeking approval or
reimbursement. At the same time, regulators must decide how
much and what kind of information to require before granting
approval and market access. Private insurers and other payers for
healthcare services must make a similar decision before deciding
which therapies to cover and how to cover them.

Health economists and other researchers have studied these
issues from a variety of angles. In one prominent example, Claxton
et al. utilize the tools of decision theory and value of informa-
tion theory to develop a framework for assessing whether enough
information exists to justify adoption of new medical technolo-
gies (Claxton et al., 2005; Claxton et al., 2001). In addition, both
researchers and practitioners have proposed and experimented
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with strategies for making sound healthcare reimbursement deci-
sions in the presence of uncertainty about clinical benefit. For
example, concepts of “conditional reimbursement” have been
developed that allow payers to reimburse technologies on the basis
of preliminary data and to revisit those decisions once more defini-
tive data arrive. While such strategies are not quite commonplace,
there is a growing body of evidence on when and how to deploy
them most successfully (Carlson et al., 2010; Niezen et al., 2007).
In sum, researchers have analyzed the problem of decision making
in the presence of incomplete information about clinical benefit,
and market participants have begun to devise strategies for making
decisions under limited information (Claxton et al., 2001; Claxton,
1999a; Claxton et al., 2015; Claxton et al.,2012; Claxton et al.,2016;
Claxton et al., 2002; Eckermann and Willan, 2007; Eckermann and
Willan, 2008; Griffin et al., 2011; Hutton et al., 2007).

At the same time, however, discomfort is growing among clin-
icians and payers about what they see as a slow but inexorable
decline in the quality of information about new medical technolo-
gies. Increasingly, new medical technologies are brought to market
on the basis of so-called “surrogate endpoint” data. For example,
cancer drugs are often approved based on evidence that drugs
increase “progression-free survival,” defined as the number of addi-
tional months or years until a patient’s cancer progresses to a
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more severe stage. Even though progression-free survival might
not be intrinsically valuable to patients, it appears to be corre-
lated with actual survival in several important cases. (Michiels
et al., 2016; Shafrin et al., 2016; Beauchemin et al., 2014) Thus,
progression-free survival is used as a surrogate for, or correlate of,
the outcome patients care about most. A similar example is the use
of low-density lipoprotein cholesterol (LDL-C) levels as a surrogate
endpoint for cardiovascular mortality (Smith, 2015).

Indeed, drugs to treat high cholesterol as well as cancer have
been approved on the basis of these “surrogate endpoints.” The
use of surrogates allows new drugs to be tested and approved
more quickly and more cheaply. For example, it takes longer for a
researcher to observe the time it takes a cancer patient to die than
to observe the time it takes for their disease to progress. Thus, it
would take longer to field a clinical trial measuring life expectancy
than progression-free survival. Similarly, changes in LDL-C choles-
terol are manifest far before cardiovascular deaths due to elevated
LDL-C.

The use of surrogate endpoints continues to grow. For example,
the US Food and Drug Administration (FDA) relied on surrogate
endpoints in approving roughly 16 drugs per year over 2010-2014
(US Food and Drug Administration, 2015), versus roughly 6 drugs
per year over 1998-2008 (US Government Accountability Office,
2009). This is perhaps to be expected as a result of progress
in medicine. For example, if cancer patients have few treatment
options and expect to die within months, researchers can mea-
sure final life-span more rapidly. If, however, patients live a long
time when taking currently available drugs, investigators become
more willing to tolerate the limitations of surrogate endpoints, in
exchange for a substantially shorter or cheaper clinical trial. Malani
and Philipson have identified this phenomenon of medical progress
making it harder and more expensive to conduct clinical trials
(Malani and Philipson, 2011).

Regardless of its underlying causes, the rise of surrogate end-
points has drawn considerable criticism charging that evidence of
improvement in a surrogate endpoint should not be used to justify a
claim about the effectiveness of a drug at improving patient health
(Prasad et al., 2015; Fleming and DeMets, 1996; Kim and Prasad,
2016; Kim and Prasad, 2015). Since surrogates are imperfectly cor-
related with the final outcomes of interest, surrogate endpoint
information provides weaker evidence of the benefit value than
does “hard” or final outcome evidence. Yet surrogate endpoints also
enable drugs to reach patients in need more quickly and potentially
more cheaply.

Economic analysis can help shed some new light on this contro-
versy. Economists will readily recognize how these issues relate
to the costs and benefits associated with higher quality infor-
mation (Griffin et al., 2011). We use standard economic tools to
devise a straightforward and systematic framework for studying
how “lower quality” surrogate endpoint evidence changes decision
making about healthcare technology. In particular, this paper pro-
vides a tractable model that: (i) characterizes the benefits of higher
quality surrogate endpoints; (ii) identifies the privately optimal
access decisions of payers and regulators operating on the basis
of imperfect surrogate endpoint information; (iii) describes the
interplay between manufacturer price negotiations and the use of
surrogate information; and (iv) assesses the social value of improv-
ing information quality, in light of the optimal strategies pursued
by payers, regulators, and manufacturers.

Several important lessons emerge. First, we show that lower
quality surrogate endpoints that are less predictive of final out-
comes should lead regulators, payers, and social planners to
demand greater evidence of surrogate benefit. Intuitively, deci-
sion makers substitute towards demanding a higher level of benefit
when faced with a higher degree of measurement error in the clin-
ical endpoint. As a result, measurement error reduces the expected

social value from any given, newly developed drug. This in turn
leads to more denials of early access and fewer new drug introduc-
tions.

Second, from a policy perspective, we show that regulators
approve an inefficiently high number of new therapies while pay-
ers reimburse too few, a phenomenon that would occur even with
“perfect endpoints.” While regulators and payers both value clinical
benefits to patients, regulators fail to consider the economic cost
of using therapy, and payers focus on the price of therapy instead
of its lower marginal cost of production. However, lower quality
surrogates worsen these two sources of inefficiency. Payers over-
react to noise in the surrogate by demanding too much additional
evidence of benefit because they fail to internalize the full ben-
efit of allowing more drugs on the market. In contrast, regulators
under react by failing to tighten evidence requirements sufficiently
because they fail to recognize the full benefit of reducing the num-
ber of drugs that come to market. A practical implication of this
result is that payers and regulators are most likely to disagree on
access when surrogates are of low quality, resulting in lower prices
to manufacturers or reduced market access. Conversely, improving
the quality of surrogates creates better alignment between payers
and regulators when it comes to decisions about drug approval and
reimbursement.

Third, pricing and information processing decisions are con-
nected. When price-bargaining between payers and manufacturers
is perfectly efficient, payers make socially efficient decisions
regarding access to new drugs. Under these circumstances, the
total surplus earned jointly by payers and manufacturers reflects
the true social surplus. Under efficient Nash-bargaining, payers and
manufacturers first maximize this joint surplus and then negotiate
over how to divide it. Therefore, pricing efficiency results in social
surplus-maximization, which in turn produces efficient use of the
available surrogate endpoint information. Thus, an efficient pricing
system helps remediate failures in the way information is pro-
cessed. From a practical standpoint, inefficiencies in drug pricing
and price-bargaining are numerous and widespread. However, our
analysis suggests an additional benefit of mitigating these common
inefficiencies.

Finally, we show that greater quality in surrogate endpoints
benefits manufacturers and payers. This circumstance leads to a
classic free-riding problem in which no single party has the incen-
tive to undertake sufficient investments in improved quality. As
a result of free-riding, the benefits of improved surrogates will
exceed costs on the margin. Therefore, some degree of public-sector
investment or subsidies for investment is called for to improve the
quality of available surrogate endpoints.

While focused primarily on surrogate endpoints, our analysis
also relates to the broader literature on the reliability of informa-
tion about the benefit of new technologies. For example, clinical
efficacy measured in clinical trials may not faithfully represent the
“effectiveness” that will ultimately accrue to real-world patients
because trials are conducted under constrained conditions, such
as aggressive monitoring or mitigation of safety issues or adverse
events (Soares et al., 2005). Outcomes in true real-world circum-
stances might vary from idealized randomized trial effects (Claxton
et al., 2005).

Our study grows out of the decision-theoretic research that has
emerged to provide a framework for evaluating the imperfect evi-
dence available for informing adoption decisions (Claxton et al.,
2005). As efforts to improve regulatory efficiency and decrease
research costs continue, regulators are increasingly faced with
imperfect information, one particular form being surrogate end-
points (Claxton et al., 2016; McKenna et al., 2015). Under such
uncertainty, value of information analysis is particularly salient in
decision making (Claxton et al., 2005; Claxton et al., 2002; Griffin
etal., 2011). Regulators must consider a range of competing issues:
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uncertainty regarding the drug’s potential for harm; the cost to
patients of less timely access to beneficial new medicines; and
the ease or difficulty of reversing their adoption decisions (Claxton
et al., 2016; Eckermann and Willan, 2007; Eckermann and Willan,
2008). Within the economic literature on drug regulation, Manski
(2009) argues that imperfect clinical evidence calls for an adap-
tive rather than an “all-or-nothing” approach by the FDA (Manski,
2009). Viscusi and Zeckhauser (2015) have analyzed how cognitive
biases cause regulators to respond less than optimally to uncer-
tainty about clinical evidence (Viscusi and Zeckhauser, 2015). Our
interest is in how varying the quality of clinical evidence changes
privately and socially optimal decisions made by regulators, payers,
and manufacturers when access and pricing are based on surrogate
endpoint information.

Our study is organized as follows. In Section 2, we present
the economic environment that we study theoretically. Section
3 describes our model of socially and privately optimal decision
making about drug access in the presence of surrogate endpoints.
Section 4 characterizes the solution for regulators, payers, and the
social planner, and assesses the efficiency of regulator and payer
decisions. In Section 5, we describe the implications of information
quality for manufacturer pricing behavior and the division of value
between manufacturers and payers. Section 6 summarizes the pol-
icy implications of all our analyses. Section 7 presents a few salient
case studies illustrating several outcomes predicted by the model
and suggests directions for future empirical research, and Section
8 concludes.

2. Economic environment

Consider a new drug with uncertain clinical benefit. There exists
surrogate endpoint evidence of benefit, which is correlated imper-
fectly with the true benefit that patients value. A regulatory body
must decide whether to approve this drug on the basis of the sur-
rogate endpoint information, or whether to wait for final outcome
data, which will take longer to produce. If the drug is approved
by regulators, the manufacturer must decide how to price it, and
payers need to determine whether they should cover the drug and
provide it to enrollees, before the final outcome data is available.
The payer and manufacturer decisions are again based on surrogate
endpoint information.

We distinguish between “regulators,” who focus solely on
approving or rejecting drugs without actually paying for them, and
“payers,” who must pay for drugs and decide whether to cover
them. For instance, the Food and Drug Administration (FDA) is the
regulator in the US, the European Medicines Agency (EMA) is the
regulator in Europe, and payers could be private insurance com-
panies, or public payers like Medicaid or the United Kingdom’s
National Health Service.

In our setup, a favorable decision will be analogous to the
“approval with research” recommendation used by the National
Institute for Health and Clinical Excellence in the UK (Longworth
et al., 2013), and also analogous to the comparison of “adopt and
trial” and “delay and trial” strategies found in the broader literature
(Eckermann and Willan, 2007; Eckermann and Willan, 2008).

The new therapy provides patients the true benefit, B, a random
variable with a well-defined mean and variance. For simplicity, we
treat this benefit as one-dimensional. Our theoretical results do
not presume a particular type of true benefit since decision makers
may vary in what they ultimately care about. Possible candidates
include: mortality rate, life-years gained, quality-adjusted life years
gained, healthcare costs, or adverse events avoided (Sanders et al.,
2016; National Institute for Health and Care Excellence, 2013). In
addition to the true benefit, information on surrogate endpoint
benefit, BS, is collected in and reported from a clinical trial before

evidence on the true or “final” benefit becomes available. Benefits
may be in comparison to the existing standard of care, or relative
to placebo.

The variables B and BE follow some joint distribution for a given
disease area and/or mechanism of action. We are especially inter-
ested in the distribution of B, conditional on the realized value of
BSE; this conditional density proves to be key, and is denoted as
f(BIBE).!

Regulators, payers, and manufacturers are all assumed to know
the joint and conditional distributions of B and B°E, so there is
no asymmetric information. The conditional density is based on
past clinical and scientific knowledge in the disease area and drug
mechanism of action, and reflects the predictive power of the sur-
rogate endpoint with respect to the final outcome. Note that this
predictive power varies both by surrogate/final outcome pairs as
well as by disease area. For example, blood pressure and LDL-C
are considered strong predictors of acute myocardial infarction,
stroke, and cardiovascular death (Ingelsson et al., 2007). Viral load
is considered a weaker predictor of outcomes for patients suffer-
ing from viral diseases (Medicare Payment Advisory Commission,
2015). Progression-free survival is a stronger predictor of overall
survival in breast cancer (Michiels et al., 2016; Beauchemin et al.,
2014) than in gastric cancer (Paoletti et al., 2013).

In terms of prediction, we formally assume that the strict mono-
tone likelihood ratio property (MLRP) applies to the density of the
true outcome conditional on the surrogate benefit. Thus, a drug
with a larger surrogate endpoint benefit is more likely to produce a
larger final outcome benefit. Effectively, this assumption ensures
that surrogate endpoint improvement is always valuable to the
innovator on the margin. MLRP is a frequently imposed condition in
information economics and in contract theory (Athey, 2002; Bolton
and Dewatripont, 2005; Mas-Colell et al., 1995). In this context, we
are assuming that a drug with a greater surrogate benefit is viewed
as more effective than an otherwise identical drug with a smaller
surrogate benefit.

We wish to analyze the decisions made when the surrogate end-
point benefit has been realized but the final outcome value has
not been. This is the salient period for approval, coverage, and ini-
tial pricing decisions. Intrinsically, surrogate endpoints are used
only in circumstances when they can be collected more quickly
than the final outcome. (If surrogates were more difficult to collect
and imperfectly correlated with the final outcome, there would
be no reason to collect them.) Both the regulator and the payer
develop optimal decision rules for “early access,” that is, approval
or denial of the drug for patient use and coverage as a function of
the observed surrogate endpoint improvement. We refer to this
observed level of improvement as the surrogate “signal.” Fig. 1
presents the decision tree that illustrates the timing of the regulator
and payer decisions about early access; the drug manufacturer also
negotiates aninitial price based on the surrogate endpoint informa-
tion. In the terminal stage, decision makers revisit decisions about
early access and could, for example, eliminate access to a drug for
which the final outcome evidence proves unfavorable. To focus our
analysis on key results, early access is assumed not to affect optimal
access decisions in the terminal stage; we return to this assumption
in the conclusion.

One nuanced issue is that the surrogate endpoint is itself mea-
sured with error in a clinical trial. Our analysis here makes the
simplifying assumption that the surrogate endpoint benefit is mea-
sured accurately in the trial. In an appendix, we address sampling
variability in clinical trials, and a requirement of statistical signif-

1 We assume that the univariate as well as the joint density functions are contin-
uous, twice differentiable and strictly positive.
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Fig. 1. Decision analytic framework.

icance; closed-form results are unavailable — except for a special
case — but we demonstrate that key results continue to hold.

In analyzing decision making, we consider a representative
patient who derives a constant value v for each unit of final out-
come benefit (e.g., QALYs), but derives no direct utility from the
surrogate endpoint benefit. A constant value per unit of benefit
is consistent with much contemporary practice in health technol-
ogy assessment, but is an increasingly imperfect approximation
when patients are more risk-averse and variability in the poten-
tial benefit is large. It is straightforward in principle to incorporate
diminishing returns into our analytic framework, but in practice
closed-form results are difficult to obtain without imposing a num-
ber of unsatisfactory simplifications. Risk aversion could induce
caution among decision makers about approving a drug based on
a surrogate endpoint signal, because approving a “bad” drug is
costlier than denying approval of a “good” drug (however, under
circumstances explained below, greater uncertainty can promote
access to a drug with a low-quality surrogate.)

We assume that decision makers value final outcome benefits
as patients do. A payer internalizes clinical benefits accruing to its
customers, while also bearing financial costs associated with treat-
ment. In covering a drug with final outcome benefit b, the payer’s
utility is vb — p, where p is the reimbursement price. Some payers
make an initial coverage decision based on the final outcome ben-
efit that can be expected in view of the surrogate endpoint signal,
and given an announced reimbursement price for the drug; this
type of decision is analyzed in Sections 3 and 4. An example of such
a payer would be the UK’s National Health Service. Other payers
may simultaneously decide whether to cover a drug and negotiate
over the reimbursement price. In Section 5, we analyze this inter-
action between a price-negotiating payer and manufacturer, based
on the Nash-bargaining framework (Lakdawalla and Yin, 2015). US
private payers would typically fall into this latter category.

The regulator is assumed to care only about clinical benefits, and
so its utility from approving treatment is simply vb. By contrast, a
social planner also accounts for production cost, and so its utility is
vb — ¢, assuming a constant marginal cost of production c. Neither
the FDA nor the EMA bears the financial costs of treatment, and
neither is charged with considering them.? One implication of our

2 Public or private payers may consider costs in a secondary review of whether to
allow access to the drugs; for example, the UK’s National Health Service may choose

assumption is that the regulator can assess benefits in purely clin-
ical terms, in contrast with a decision maker that must monetize
benefits so as to be commensurate with costs. Yet outside the US
and perhaps even in the US, a regulator may place some weight on
cost. The fundamental assumption here — depending on the par-
ticular analytical result — is that the regulator places less than a
dollar’s worth of weight on a dollar of production cost, or that the
regulator cares about production cost but not about the reimburse-
ment price. This seems reasonable, since we define the regulator as
an approval body that does not directly bear the cost of paying for
the drugs. It is also worth noting that the marginal production cost
of most drugs — especially conventional “small-molecule” drugs —
is quite modest.

It is possible that treatment produces benefits that are not
enjoyed by patients themselves. For example, employers may share
in any gains in workplace productivity. A social planner and regula-
tor focus on social value, and should account for such benefits in the
value parameter v. Insofar as a payer ignores benefits which do not
accrue to its enrollees, it will be more likely to deny coverage of a
drug that a regulator (and social planner) would approve, reinforc-
ing a key result in Section 3. It is also possible that the “surrogate
endpoint” is valuable to the patient in and of itself, independent of
how it predicts the final endpoint. For example, disease progres-
sion may be a surrogate for patient survival, but patients may also
wish to delay progression, independent of survival benefits. If this
is the case, the marginal benefit of increases in the surrogate will
be higher than what we model, all else equal.

Abstracting from these issues, the alternative perspectives on
the utility from treatment with a new drug with final outcome
benefit b can be summarized as follows:

ur(b;p,c)=vb (M
up(b;p,c)=vb—-p

us(b;p,c)=vb—c

in which the subscripts r, p, and s refer to the regulator, payer and
social planner, respectively. It will be convenient below to con-

on cost grounds not to grant access to a drug that was approved by the EMA. As
noted earlier in this section, we include costs in a payer’s utility function.
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sider the general utility function u (b; p, ¢), which nests the three
perspectives above as special cases.

3. Access decisions

A regulator that is weighing whether to approve a drug before
final outcome evidence is available from a clinical trial, based on a
surrogate endpoint signal of a particular strength, will face one of
two possibilities: (1) the drug ends up being non-inferior to a com-
parator therapy, so that incremental benefit is non-negative (b >
0); or (2) the drug is inferior to a comparator therapy (b < 0). The
regulator’s expected utility from early approval can be expressed
in terms of these two kinds of outcomes:

E [ur (B; p, c)|b*] =E [vBIB > 0, b% ] « Pr [B > O|b**]
—E [-vB|B < 0, b ] « Pr [B < O|b**] (2)

where E [u; (B;p, c)[bE] and Pr[B > 0[bf] stand for expected
utility and probability conditional on the event that the surro-
gate endpoint signal is bSF (formally, E [ur (B;p, c)|BE = bSE] and
Pr [B > 0|BSF = bSE)).

Expected utility consists of a difference between two terms. The
first term represents the expected upside from early approval of a
drug that proves to have positive final outcome benefit, weighted
by its likelihood. The second term is the downside from a drug with
negative final outcome benefit.

The payer faces an analogous but distinct trade-off in deciding
whether to cover a drug. From its standpoint, the two key cases are:
(1) the drug ends up being worth its price in terms of final outcome
improvement, i.e., vb > p; or (2) the drug ends up being worth less
than its price, i.e., vb < p. The payer’s expected utility from early
coverage based on the surrogate signal can thus be expressed as:

E [up (B;p, ) |b55] = (E [I}B —plvB > p, bSE} * Pr [vB > plbsq)

—(E[- (vB —p)|vB < p, bE] « Pr [UB < pleE] 3)

The first term is the upside from a drug with value exceed-
ing price, and the second is the downside from a drug with price
exceeding value. While a payer and a regulator face the same con-
ceptual trade-off, the way they perceive benefits and costs differs.
This difference will lead to distinctive decision rules.

We now characterize private and social thresholds for drug
access. The MLRP assumption implies that the expected utilities
from early access in Eqgs. (2) and (3) are monotonically increasing
in the level of surrogate endpoint benefit. Thus, the optimal deci-
sion rules for both regulators and payers are such that approval or
coverage will be granted if and only if the surrogate benefit signal
is strong enough, that is, higher than a particular threshold value.
The therapy will not be made available if the surrogate evidence is
below the threshold, as shown in Fig. 2 for a regulator’s approval
decision. The optimal thresholds for a regulator and a payer respec-
tively maximize the clinical benefits and net benefits in terms of
the final outcome benefit that can be expected according to the
surrogate signal.

Formally, the general form of the problem faced by a decision
maker with objective function u (b; p, c) is

maxE [u(B;p, c)b* > 7]
T

= max / / u(b;p, o)f (bb*) db | fsg (bF) db*E (4)
T R

in which 7 denotes the threshold for access.

Threshold fior
approval

i Do not approve

Approve

Fig. 2. Optimal approval decision for a regulator.

The formulation above treats the surrogate endpoint benefit as
known. In reality, it too is observed with error that depends on
the sampling variability in the trial. For the sake of comparison,
the following decision problem incorporates sampling variability
in the trial SE:

+00
max///u(b;p, o)f (b, bE, 8) dbdb>Ede
T

R1-¢R

in which b5E is the true SE, ¢ is statistical noise, and the measured

SE, bSE = bSE + &. This more complex problem is analyzed in the
appendix, where we show that our key results from the simpler
formulation continue to obtain, albeit without elegant closed-form
solutions.

Applying Leibniz’s rule to the problem without sampling vari-
ability, the derivative of the objective function in Eq. (4) with
respect to the threshold is

- /u(b;p, c)f (blr)db | fyse (v) = —E[u(B;p, o) |t]fse(z)  (5)

R

Recognizing that fs (bSE) is everywhere positive, the optimal
threshold t* satisfies the first-order condition:

E[u(B;p,c)|t*]=0 (6)

The uniqueness of the optimum is ensured by the MLRP assump-
tion. For the social planner, the first order condition is

VE[B|t] =c (7)

However, for the regulator, Eq. (6) becomes vE [B|BSE = 7] =0,
which implies an inefficiently low approval threshold. Since the
social planner places more weight on cost, the lower-threshold
regulator approves “too many” drugs based on surrogate endpoints.

By similar reasoning, a payer will demand a stronger surrogate
signal than the social planner before covering the drug, since the
drug’s reimbursement price exceeds its production cost. Thus, a
payer approves “too few” drugs based on surrogate endpoints. This
rank ordering of decision makers’ approval/coverage thresholds is
illustrated in Fig. 3. Later, we describe how variation in the quality
of surrogates influences the extent of inefficient over- and under-
approval.
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Fig. 3. Optimal thresholds in the three perspectives.

4. Determinants of access decision rules

The privately and socially optimal decision rules depend on var-
ious factors, including the quality of the surrogate endpoint in
predicting the final outcome benefit; prior expectations of sur-
rogate and final outcome benefits; the value of a final outcome
benefit; and the payer and social cost of treatment with a new drug.
Here, we explore how these factors affect decision making. In what
follows, we assume joint normality of surrogate and final outcome
benefits to obtain closed-form-expressions for access thresholds.

4.1. Conditional expected benefit under joint normality

For all decision makers, utility is linear in its arguments, and
expected utility depends on the expectation of the final outcome
benefit conditional on the strength of the surrogate endpoint signal.
Under joint normality of the surrogate and final outcome benefits,
a standard result is that the conditional expectation of the final
outcome benefit can be written as (Greene, 2012):

E[BIbS] = E[B] + p—L (b —E [B])., ®)
OSE

in which p is the correlation between the surrogate and final out-
come benefits, E [B] and E BSE] are the expectations of each prior
to the trial, and osg and op are their respective standard deviations.

If the surrogate signal turns out as expected (bSf = E [BE]),
the signal has no information content, and the expected final out-
come benefit is simply its prior expectation. If the surrogate signal
turns out to be one unit above its expectation, this new and favor-
able information predicts that the final outcome benefit will be

p% units higher, on average, than its own expectation. The term

,ogTBE increases in the strength of the correlation between the end-
points, and corresponds to the coefficient that would be obtained by
regressing final outcome benefits on surrogate endpoint benefits,
an exercise thatis designed to maximize predictive power. We refer
to this term as the “quality” of the surrogate endpoint signal. For a
higher quality surrogate, one unit of improvement leads to a larger
upward revision in the expected final outcome improvement. In
cancer, for example, progression-free survival is a higher-quality
surrogate for overall survival for breast tumors (Michiels et al.,
2016; Beauchemin et al., 2014) than for gastric tumors (Paoletti
etal, 2013).

4.2. The regulator’s approval threshold

The regulator will approve the drug if E [BleE] > 0. Applying
Egs. (1) and (8) to Eq. (6), this condition is equivalent to approving
drugs with bF > 7, where:

EB)

T =E [B] - Yy
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There are two cases to analyze here, although the intuition
is similar in both. First is the case where E(B) > 0, so the drug
is thought to be beneficial ex ante. In this case, the trial ascer-
tains whether there is any “bad news” that would revise beliefs
downward and result in a rejection. For a higher quality surrogate
(e.g., higher %)' a smaller amount of “bad news” will cause the
regulator to reject the product. Therefore, the threshold 7} will
move upwards. So, for example, the same amount of bad news
could lead a regulator to approve a gastric cancer drug based
on progression-free survival, but to reject a breast cancer drug,
because this surrogate is a stronger predictor of overall survival
for breast cancer (Michiels et al., 2016; Beauchemin et al., 2014)
than for gastric cancer (Paoletti et al., 2013).

When E (B) < 0, the trial provides the decision makers with an
option to make use of the drug if it proves to be more beneficial
than expected. Thus the issue is whether there is “good news” in
the trial surrogate endpoint that would revise beliefs about benefit
upward and result in approval. For a higher quality surrogate, a
smaller amount of “good news” will cause the regulator to approve
the product. Therefore, the threshold 7} moves down. Note that in
both cases, when the surrogate is of higher quality, the regulator
requires a smaller amount of “news” to change her beliefs.

To summarize, the regulator sets a higher approval threshold if

1 Its prior expectation of the final outcome benefit (E [B]) is rela-
tively low

2 Its prior expectation of the surrogate outcome benefit (E [BSE} )is
relatively high

3 The surrogate is of relatively low quality, and E[B] < 0

4 The surrogate is of relatively high quality, and E [B] > 0.

The approval threshold does not depend on v, the value of the
final outcome benefit to patients, because the regulator does not
weigh the financial cost of the new drug against its clinical ben-
efit. Thus, there is no need to “monetize” clinical benefit in the
regulator’s decision.

4.3. The payer’s decision

The payer will grant coverage to the drug if vE [B|bSE] > p. This

condition is equivalent to allowing access for drugs with b5E > 7,
where:

o v

Aswith the regulator, the payer sets a higher threshold for access
if the prior expectation of the final outcome benefit is relatively
low or the prior expectation of the surrogate endpoint benefit is
relatively high.

In addition, the payer sets a higher threshold if the monetary
value of final outcome improvement is relatively low, or the reim-
bursement price of the drug is relatively high. These conditions on v
and p have the natural implication that a payer sets a higher thresh-
old if the prior expectation of the net benefit to the payer (vE [B] — p)
is relatively low. Relatedly, the payer also sets a higher threshold if
the expected cost effectiveness of the new drug is unfavorable from
the payer’s perspective (that is, p/E [B] is relatively high). Thus, in
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contrast with a regulator, a payer’s decision making (in terms of
the access threshold imposed on new drugs) is driven in part by its
drug acquisition costs. As with the regulator, a payer sets a higher
threshold when the surrogate is relatively low quality and the prior
expectation of benefit is negative, or the surrogate is higher quality
and expected benefit is positive. However, a payer’s perspective on
benefit is net of price (that is, vE [B] — p).?

4.4. The socially optimal decision

The social planner sets the approval threshold at

t::E[BSE]_HE(l_W) (11)

P v

This expression is identical to a payer’s threshold, with cost
replacing price. The social planner weighs benefits and costs in
setting its access threshold, but from the perspective of society.
Thus, for example, the planner will set a higher threshold when the
“social” cost-effectiveness ratio is expected to be less favorable (i.e.,
¢/E[B] is higher.)

4.5. Determinants of inefficiency

The decisions of a regulator and payer depart from that of the
social planner, as was shown in Fig. 3. The regulator’s threshold is
weakly less stringent than the efficient threshold, because it fails to
consider cost. Based on Egs. (9) and (11), the difference in thresh-
olds is:

c
-1 = >0 12
. (p) (12)

This expression suggests, intuitively, that the degree of mis-
alignment rises with cost because the regulator fails to consider
the marginal cost of producing the drug. Since both decision mak-
ers care about the value of the clinical benefit, the misalignment
decreases with v, when costs are held constant. A less obvious
implicationis that alower-quality (i.e., more poorly correlated) sur-
rogate endpoint exacerbates this inefficiency, leading to a greater
deviation in the regulator’s threshold. Intuitively, a regulator fails
to account for the cost of treatment with new drugs when setting its
threshold; as a consequence, a regulator strengthens its approval
threshold too little in response to less information in the surrogate
endpoint. Speaking heuristically, the marginal cost of mistakenly
approving a drug is lower for the regulator than the social planner.
Thus, the regulator responds less than the planner does to increases
in the likelihood of mistakes, and thus to reductions in the quality
of the surrogate endpoint.

In contrast to regulators, payers impose a threshold that is too
stringent, because they “over-internalize” costs, accounting for the
reimbursement price rather than the social cost. From Eqs. (10) and
(11), the difference in thresholds is

t;_r::(fp_“tf>>o (13)
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Once again, it is fairly intuitive that the degree of misalignment
rises with the manufacturer markup, p — ¢, since this markup is
the wedge between payer and social costs. As with the regulator
decision rule, a lower-quality surrogate endpoint exacerbates the
extent of inefficiency.

3 It is possible for the expected final outcome benefit to be positive while the
expected benefit net of the reimbursement price is negative. In this case, a payer
responds to a higher quality signal by lowering its coverage threshold, while a
regulator raises its approval threshold.

A final implication follows from the difference between the
payer and regulator thresholds:

* * p
-1 = (mz) >0 (14)
VpzE

Specifically, a regulator and a payer disagree the most about
access thresholds when surrogate endpoint quality is low. It is
important to emphasize that this result does not depend on the
signs of the prior expectations of benefit for the two decision
makers.*

5. Manufacturer pricing behavior

In the preceding section, we analyzed the decision making of
a payer that sets a threshold for covering a new drug based on a
surrogate endpoint signal, given a fixed reimbursement price. This
may be applicable, for instance, to some public payers that require
manufacturers to announce a price and then determine whether
the drug will be covered. We now consider the case of a payer that
simultaneously determines coverage and negotiates the price with
the manufacturer. Many private payers, and some public payers,
solve this problem.

To focus squarely on the role of the surrogate endpoint signal, we
abstract from complexities relating to negotiation between a man-
ufacturer and multiple payers. For example, we rule out sequential
bargaining games, and instead consider a single payer. To sim-
plify further, we assume that sales of a covered drug are inelastic
with respect to the price. Thus, a profit-maximizing manufacturer
seeks to maximize net revenue p — ¢, while the payer maximizes
its expected utility given the surrogate endpoint signal. It is worth
emphasizing that our setup produces relatively simple pricing rules
that might not match more complex real-world pricing environ-
ments.

The payer and manufacturer will jointly agree to launch the
drug only if their joint surplus from doing so is positive. If
this fails to be true, they cannot both find it worthwhile to
launch the drug. This simple point has an important implica-
tion, because the sum of the payer’s and manufacturer’s surplus,
(v (E[B] +pE (bE—E [BSE])) —p) +(p—c), is equal to social
surplus,v (E [B] + p% (bSE —E [BSE] )) —c. Therefore, it follows
that drugs are launched only if the expected social surplus from
doing so is positive. This is the same criterion that the social
planner uses. Therefore, in a simple and efficient setting with Nash-
bargaining, zero bargaining costs, and payers that fully internalize
the value of drugs, payers and manufacturers launch the efficient
number of drugs, given the quality of the surrogate endpoint infor-
mation. Note that this would be true even if a regulator approved
too many drugs in an earlier stage — the market would filter out
the excess efficiently. One can also use similar reasoning to show
that payers make efficient benefit design decisions under ideal
Nash-bargaining (Lakdawalla and Sood, 2013). Intuitively, payers
and manufacturers find it optimal to maximize joint surplus first,
and then bargain over how to divide it. To be sure, real-world
price negotiation is unlikely to be perfectly efficient for a variety of
reasons discussed below. However, this theoretical result demon-
strates the connection between efficient pricing and the efficient
use of the available surrogate endpoint information, and vice-versa.

4 If the expected final outcome benefit is positive while the expected net benefit
is negative, the result here follows from the results in Sections 4.2 and 4.3. The result
here also holds when the decision makers alter their threshold decisions in the same
direction when surrogate quality rises. Intuitively, the difference in thresholds is
driven entirely by the decision makers’ contrasting perspectives on costs, under the
maintained assumption that a regulator and payer value clinical benefits to patients
equally.
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In light of these results, we can — without loss of generality
— abstract from payers’ access and benefit design decisions when
setting up the bargaining problem, because these problems are
solved optimally in an earlier and independent stage. This avoids
cumbersome notation without changing the analytical results for
pricing. Denoting the Nash-bargaining leverage of the manufac-
turer as § € (0, 1), the Nash-equilibrium is the solution to

m;lx(p - c)‘s{v (E[B] +p§—SBE (bSE -E [BSE])> —P}HS

in which the expression in curly brackets is the payer’s expected
utility under joint normality. This problem has the first-order con-
dition:

* O] *
(1-8) 0~ =8 {v(ElBI+ 2 (b ~E[5%])) ~p'}
which can be restated as

(p* —c)=5{u (E[B]er% (b —E [BSE])) _C}

The expression in curly brackets is the total social surplus that
can be expected from drug coverage based on a surrogate endpoint
signal. In equilibrium, the manufacturer’s share of this surplus is
equal toitsleverage, the standard Nash-bargaining result. The price,
manufacturer profits, payer profits, and total social surplus are all
higher if

“BE ), and the surro-

0|
gate endpoint signal is “good news” (bt > E [BSE )

2 The surrogate is of relatively low quality, and the surrogate end-
point signal is “bad news” (b5 < E |BSE])

3 There is more “good news” or less “bad news” in terms of the
strength of the surrogate endpoint signal (i.e., b5t — E [BSE} is
higher)

4 The prior expectation of the final outcome benefit is relatively
favorable (E [B] is larger).

1 The surrogate is of relatively high quality (o

The latter two conditions specifically imply that the expected
final outcome benefit is greater. Where the final outcome benefit is
relative to a standard of care defined by the efficacy of other drugs,
the reimbursement price is higher when the new drug’s expected
benefit over prior treatments is greater. The availability of thera-
peutic alternatives may further affect new drug pricing by altering
the relative bargaining power of a payer and manufacturer.

A key result here is that a manufacturer benefits from an
improvement in the quality of a surrogate endpoint — through
accelerated approval and coverage decisions — and so does a payer,
as one would expect. The fact that each captures only a share of the
increase in social surplus has important policy implications.

6. Policy implications

In Section 4.5, we showed that a higher-quality surrogate
endpoint helps improve alignment between drug approval and
reimbursement decisions. Section 5 showed that efficient pricing
leads to efficient coverage thresholds being set by payers, given
the available surrogate endpoint information. From a policy per-
spective, this latter result suggests that inefficient prices preserve
distortions in the way information is processed and likely result in
excessive denials of access to drugs. For example, this result might
apply if prices are set administratively in a manner that does not
match market outcomes, or if payers fail to internalize the benefits
accruing to patients (i.e., v differs for payers and patients). From a
practical standpoint, such inefficiencies in pricing are more likely to
be the rule than the exception, but our analysis reveals the linkage
between price regulation and the processing of clinical information

by the marketplace. Policies that move towards more efficient pric-
ing also lead to more efficient processing of surrogate information
and more efficient access decisions.

We also showed that efficient pricing “cleans up” inefficiency
in regulator behavior. Even if regulators approve too many drugs,
efficient pricing will result in optimal access. Thus, regulators can
afford to take more risks on approving drugs with uncertain ben-
efits, when pricing is more efficient, and vice-versa. For instance,
physician-administered cancer drugs treating older populations —
whose prices are administratively set by Medicare Part B — might
warrant greater caution than antidepressants reimbursed primarily
by private payers.

Section 5 also showed how higher quality increases the
total social surplus from early access to new drugs, because
higher-quality surrogates lead to more accurate decisions based
on surrogate endpoint information. Mathematically, this effect
appears as higher social value per new drug, and accrues both to
payers and manufacturers.

The sharing of surplus between payers and manufacturers
results in a classic free-riding problem, in which neither party faces
efficient incentives to invest in improving the quality of surrogate
endpoints. Thus, absent public-sector investments or subsidies for
private research into improved endpoints, the following market
failures are likely to occur:

1 There are drugs left “in limbo,” with regulatory approval but cov-
erage denial;

2 For each drug that has been developed and brought to trial, soci-
ety can expect to realize less value;

3 Investments in pharmaceutical innovation are lower because the
expected return on investment for the manufacturer is damp-
ened.

The third point follows because higher quality surrogates lead to
greater profit (Section 5), and in turn greater profits lead to greater
investments in innovation according to a variety of models in the
literature (Nordhaus, 1969; Loury, 1979; Green and Scotchmer,
1995). Thus, firms will be more likely to innovate in areas with
higher quality surrogates. This creates an interaction between the
quality of evidence and the quantity of innovation. Malani and
Philipson make a complementary point about the cost of evidence,
with a particular focus on the context of HIV treatment (Malani and
Philipson, 2011).

Therefore, improvements in the quality of surrogates can lead
to fewer denials of early coverage of drugs approved by regula-
tors, higher expected social value from each drug that enters trials,
and more drugs developed and brought to trial. Moreover, public
policies that stimulate improvements in surrogate quality may be
needed in order to achieve these aims, because private benefits are
shared across many parties.

Finally, it is useful to note that the problem of interest here —
free riding in the costly production of high quality surrogates —
arises much more generally. For example, where a manufacturer
has invested in evidence that demonstrates efficacy of a drug, and
another manufacturer seeks approval of a new drug with a similar
mechanism of action but fewer side effects, the second manufac-
turer will be able to rely to some degree on the first manufacturer’s
costly evidence in expediting its own approval.”

5 We thank an anonymous referee for this point.
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7. Case studies and empirical context

To illustrate some of the practical implications of our theoret-
ical framework, we present a few historical case studies drawn
from FDA approval and payer rejection experience. Causal inference
regarding the effects of endpoint quality lies beyond the scope of
this paper. We aim instead to provide a few real-world examples of
the various kinds of outcomes predicted by the theory and suggest
a path forward for future empirical research in this area.

First, our theory predicted that rejections might occur for
drugs with low-quality surrogates, and particularly if the drug
underperformed prior expectations. For example, rociletinib was
investigated for use in a genotype of non-small cell lung cancer
known as EGFR+. The surrogate endpoint in this case was “objec-
tive response rate” (ORR), which is the fraction of patients whose
tumors shrank by a prespecified size. ORR is a surrogate for overall
survival in cancer, but it is weakly correlated with overall survival
in non-small cell lung cancer (Blumenthal et al., 2015). In spite of a
relatively strong ORR benefit — 30.2% of patients exhibited tumor
shrinkage — an FDA advisory committee voted against accelerated
approval, instead recommending to wait for further evidence of
benefit (US Food and Drug Administration, 2016).

Second, our framework suggests that the misalignment between
regulator and payer preference will result in some drugs “left
in limbo,” i.e., approved for use but not covered by payers.
One example is aclidinium bromide for the treatment of acute
episodes among patients with chronic obstructive pulmonary
disease (COPD). The surrogate endpoint in this case is “forced expi-
ratory volume in one second” (FEV-1), a measure of how much air is
expelled from the lungs within one second. FEV-1 is considered pre-
dictive in COPD of mortality, hospitalizations, and exacerbations of
disease. (Niewoehner et al., 2000; Paul and David, 2014) However,
it is still thought to be a low-quality surrogate (Paul and David,
2014; Vestbo et al., 2008). This drug was approved by the FDA,
but its use has been limited among insurers. For example, some
private insurers do not coveritatall(Cigna, 2016), while others sub-
ject it to dispensing limits (BlueCross BlueShield of Illinois, 2016)
or other access restrictions (Harvard Pilgrim Health Care, 2016).
Another example is belimumab, which was approved to treat lupus
on the basis of a surrogate endpoint, but subsequently denied reim-
bursement by the top five national payers in Europe who found the
surrogate too weakly predictive of final benefit (Marinoni, 2012).
In these cases, regulators perceive enough benefit for approval, but
payers do not always see fit to provide access.

Third, the framework suggests the possibility of drugs approved
and covered on the basis of surrogates alone, particularly when the
drug generates a strong signal using a high-quality surrogate. Rux-
olitinib is a first-in class treatment for myelofibrosis, approved on
the basis of percent reduction in spleen size as a surrogate endpoint
(US Food and Drug Administration, 2011a). Patients with myelofi-
brosis experience substantial symptom burden, which can be
managed and alleviated with spleen size reduction (Mascarenhas
and Hoffman, 2013; MPN Research Foundation, 2016). Scientific
understanding of myelofibrosis, a type of chronic leukemia, as a
disease is still evolving, with spleen size reduction and patient
reported outcomes serving to be the best endpoints for myelofi-
brosis treatments (Mascarenhas and Hoffman, 2013; MPN Research
Foundation, 2016). Strengthening the signal of its surrogate end-
point, ruxolitinib has also demonstrated the potential correlation
between spleen reduction and long term mortality in preliminary
findings from clinical trials (Verstovsek et al., 2012a; Verstovsek
et al., 2012b). The quality of and strong signal from the surrogate
endpoint for ruxolitinib has resulted in its widespread coverage
and placement on preferred drug lists (Express Scripts, 2016; CVS
Caremark, 2016).

Fourth, the theory presupposes that approvals are sometimes
granted based on surrogate endpoints that are later shown to be
poor predictors of final outcome benefit. One example is beva-
cizumab, which was approved in 2008 to treat breast cancer on
the basis of clinical trials showing a progression-free survival ben-
efit of 5.5 months (US Food and Drug Administration, 2011b).
Progression-free survival is thought to be a good quality surro-
gate for overall survival in breast cancer (Michiels et al., 2016;
Beauchemin et al., 2014). The FDA granted “accelerated approval”
on the basis of this information, but required that additional clin-
ical evidence be collected in the meantime. When the follow-up
information became available, there was no evidence that patients
lived longer when treated with bevacizumab, and the FDA with-
drew its approval for breast cancer in 2011 (US Food and Drug
Administration, 2011b; US Food and Drug Administration, 2011c).

As noted, these examples do not systematically test our theoret-
ical predictions, but they illustrate their connection to real-world
outcomes. More systematic empirical testing could proceed along
several lines. To stimulate further research, we suggest a few paths
forward, recognizing that a full development of these empirical
strategies lies beyond the scope of this paper. First, one might view
the correlation between surrogates and final endpoints as exoge-
nous in a particular disease area. For instance, progression-free
survival is known to be a better correlate of overall survival in some
cancer tumor types than in others. Exploiting this fact, one might
proceed by estimating a model of approval and reimbursement
thresholds as a function of this correlation. These thresholds are
latent variables that can be modeled using data on binary approval
and reimbursement decisions in the usual way. The theory predicts
that decision makers call for more stringent evidence of surrogate
benefit within tumor types that have lower-quality surrogates. To
conduct such a study, one would need to cull the literature for
estimated correlations between the surrogate endpoint and the
final endpoint, across a range of diseases. These data could then
be combined with approval data.

Second, one could test the prediction that payers and regulators
behave differently. One could collect reimbursement data mea-
suring the fraction of payers that gave any access to the drug, or
preferred access to the drug. A complication here is deciding how to
measure “any access” and “preferred access,” but this seems a sur-
mountable obstacle for an empirical study. Given this information,
one could assess empirically whether and to what extent payers
demand more stringent evidence of benefit than regulators, when
faced with disease areas that have lower-quality surrogates.

Finally, one could assess the effects of free-riding incentives on
investments into surrogates. Here, pharmaceutical pipeline data
could be used to ascertain the surrogate endpoints used in clinical
trials for a given disease area. One could simply count the number
of surrogates and determine whether the arrival of new surro-
gate measures is more likely in disease areas where fewer firms
are competing to develop or market new drugs. This implication
is supported by theory, because free-riding incentives are always
exacerbated by the presence of more competitors.

8. Conclusion

Uncertainty is inevitable when evaluating new medical treat-
ments. We have evaluated one particular source of uncertainty,
imperfect information about clinical benefit (such as quality-
adjusted life years). In some contexts, the availability of reliable
information has improved, due to lower costs for particular data
points or analytic techniques. Yet in our setting, there is reason to
be concerned about the quality of information. As medical tech-
nologies continue to improve, uncertainty about clinical benefit
may become more important. Longer lives and better health mean,
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fortunately, that clinical trial participants will be slower to die or
develop significant comorbid diseases. Thus, it will become increas-
ingly costly to collect final outcome data. On one hand, this may
lead to longer and more expensive clinical trials, an eventuality
that imposes its own costs on patients waiting for new therapies to
be introduced. On the other hand, this trend may hasten the substi-
tution towards imperfect surrogate endpoints. The question of how
best to incorporate surrogate endpoints into regulatory, reimburse-
ment, and pricing decisions will become increasingly important.

Our analysis reveals three main themes for policy makers. First,
imprecision in surrogate endpoint measures leads to excessive
denials of early access to new drugs, lower social value for each
drug that is developed and brought to trial, and lower levels of
innovation. This tendency is exacerbated by inefficiency in drug
pricing, and by misalignment between the objectives of payers and
of patients. Thus, policies that improve the efficiency of pricing also
help mitigate inefficiencies associated with surrogate endpoints. At
the same time, regulators can afford to take more risks on “less well-
proven” benefits, when the drug will be priced in a well-functioning
private market, and vice-versa for drugs with inefficient pricing.
Moreover, private incentives to invest in better surrogate endpoints
are likely to be insufficient because the benefits are shared across
payers and manufacturers. This misalignment creates a role for
public policy to stimulate some (finite) degree of improvement in
surrogate endpoints through direct investment in or subsidies for
research.

Surrogate endpoints can be based on biomarkers. Thus support
for the identification of new biomarkers through gene expression
profiling, and for the empirical validation of identified biomarkers,
can help to improve the quality of surrogate endpoint informa-
tion. As a noteworthy example, the Biomarkers Consortium has
launched an effort targeting autism spectrum disorder (National
Institutes of Health, 2015); public partners within this consortium
include the National Institutes of Health, the FDA, and the Centers
for Medicare and Medicaid Services (The Biomarkers Consortium,
2011). In diabetes and related diseases, the protein adiponectin
offers promise as a surrogate, but requires further validation (Lim
et al, 2014).

A second theme for policy makers from our analysis is that
economic factors can and should be incorporated into clinical evi-
dence requirements. Greater leniency is warranted for products
with greater expected social value, and vice versa. The role of eco-
nomic factors in reimbursement decisions is often fairly explicit,
but regulators typically disavow a connection between approval
based on clinical factors and the economic value of a new ther-
apy. Agencies like the FDA and EMA may need to begin considering
costs. On the other hand, the theory also suggests that an efficient
pharmaceutical pricing regime can substitute for this requirement.
With ideally efficient pricing, payers replicate the socially effi-
cient approval threshold. Here, even if regulators approve too many
drugs, payers would apply an efficient filter. Thus, it would appear
that policy makers can consider introducing economic criteria into
drug approval decisions, and/or reforms that improve the efficiency
of the pricing regime, e.g., less reliance on administratively deter-
mined prices. While the latter is a more daunting policy problem
to solve, it also has a broad array of social benefits.

Finally, imperfect surrogate endpoint information can be effi-
ciently incorporated into approval and reimbursement processes.
Decision makers would be prudent to call for higher standards
of evidence when faced with poorer-quality surrogates or lower
expectations of clinical benefit from new products. However, rather
than resisting the emergence of surrogate endpoints, healthcare
decision makers should search for ways to make the best possible
use of the information available.

One possibility is to utilize new regulatory decision schemes
that move beyond traditional binary outcomes of approval or

rejection. For example, surrogate endpoints could be particularly
favorable in adoption decision schemes such as “coverage with evi-
dence development” (CED), also known as “performance-based risk
sharing agreements” (PBRSA). CED gives conditional availability for
promising technologies with the requirement that further evidence
of benefitis produced (Hutton et al., 2007). The primary aim of such
schemes is to reduce uncertainty in outcomes, efficacy, cost, eco-
nomic benefit such that an appropriate price that aligns the benefit
to the manufacturer and the value to the patient (Carlson et al.,
2010; Garrison et al., 2013). Such increased regulatory flexibility
for surrogate endpoint data would enable patients to receive clin-
ical benefits using technologies that otherwise would have been
rejected by regulatory bodies. CED is currently being used by the
Centers for Medicare and Medicaid (CMS) to assess the efficacy of
a variety of technologies including NaF-18 PET scans for identifica-
tion of bone metastasis of cancer (Centers for Medicare & Medicaid
Services, 2015). Likewise, in 2015, Harvard Pilgrim Health Care
entered into a PBRSA with Amgen for its PCSK9 inhibitor known as
evolocumab in order to assess real-world efficacy and performance
and provide justification for the high price tag (Reinke, 2016). As
final outcome data becomes increasingly scarce and costly, it makes
sense to substitute towards surrogate endpoint evidence.

Future research on surrogate endpoints can be taken in a num-
ber of worthwhile directions. Our framework addressed early
access to a drug, based on a surrogate endpoint signal of a final
outcome benefit for which evidence was not yet available. In real-
ity some trials follow multiple surrogates, or may produce an early
and thus noisy signal of the final outcome to accompany the sur-
rogate evidence, presenting a decision maker with the problem of
how best to combine the signals. Where multiple surrogates are
available but only some are reported in a trial, a decision maker
will have to consider whether the reported measure is susceptible
to any bias. In addition to clinical benefit, a trial is typically infor-
mative about safety and adverse events, and in general a decision
maker will need to decide how to trade off favorable and unfa-
vorable outcomes, based on their importance to patients and the
comparative quality of the signals. A decision maker could be faced
with the problem of prioritizing two drugs for the same disease.
In such a situation, it is possible that a drug with a noisier signal
merits priority, precisely because its greater variability in the final
outcome creates option value in the form of upside risk (Sanchez
etal., 2012).5

The last point also highlights the potential interaction between
risk-preferences and decision making in this context. Our frame-
work utilized a number of assumptions, including risk neutrality
and in some instances joint normality of the surrogate and final out-
come benefit. Earlier in the text, we conjectured that risk-aversion
may induce greater caution about acting on low-quality signals.
In this section, we also discussed how lower-quality signals might
also be more valuable. Numerical analysis could be used to explore
decision making in the presence of some degree of risk aversion,
and under alternative distributional assumptions. In addition, our
framework was parsimonious in the flow of information. In reality,
evidence accumulates over the course of a trial. These dynamics
confront a regulator and others with an ongoing decision pro-
cess vis-a-vis drug access, based on the evidence thus far and the
evidence still likely to come; complexities such as reversion to
the mean would become relevant to decision making. Our sim-
ple dynamics also assumed that early treatment did not affect the
value of treatment once final outcome evidence became available;
effectively, there was no cost to reversing a decision to grant early
access if the final outcome proved unfavorable. This assumption

6 We thank an anonymous referee for this point.
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may not be appropriate in some circumstances, and a number of
studies have analyzed the impact of reversal costs on optimal deci-
sion making (Claxton et al., 2012; Claxton et al., 2016; Eckermann
and Willan, 2007; Eckermann and Willan, 2008).

Future research on surrogate endpoints can be taken in other
worthwhile directions. Our framework addressed early access to a
drug, based on a surrogate endpoint signal of a final outcome benefit
for which evidence was not yet available. In reality, some trials fol-
low multiple surrogates. Others may produce early, noisy measures
of the final outcome to accompany the surrogate evidence, present-
ing a decision maker with the problem of how best to combine the
signals. In addition to clinical benefit, a trial is typically informative
about safety and adverse events. When an effective drug also poses
safety risks, decision makers will need to weigh the trade off and the
comparative quality of the signals. Along another dimension, cer-
tain patients may value a surrogate endpoint independently of the
final outcome; for example, even if progression-free survival were
not predictive of overall survival, more advanced disease typically
produces more severe symptoms.

This study has also taken the choice of surrogate endpoint and
the structure of clinical trials as given. In some important cases,
drug developers may be able to structure trials to their own advan-
tage. One possibility is that multiple surrogates are available for the
final outcome benefit of a particular drug. In such a situation, drug
developers may possess superior information, and specify advan-
tageous surrogates in designing trials. Regulators and payers would
then have to consider the susceptibility of reported surrogates to
bias. Another possibility is that a pharmaceutical company with
multiple drugs in development for a disease may be more likely to
bring to trial the drug that is expected to perform well with respect
to a surrogate, recognizing that a superior surrogate signal will pre-
dict a superior final outcome benefit. The strategic design of trials,
together with the appropriate response of regulators and payers,
represent an important and interesting topic for further inquiry.

This study has focused on thresholds for drug access based on
the magnitude of a surrogate endpoint signal, yet access may also
impose a threshold for statistical significance of the trial evidence.
In fact such a requirement can result in denial when access would
have been welfare-enhancing (Claxton et al., 2001; Claxton, 1999a;
Claxton, 1999Db). Still, many real-world decision makers demand
statistical significance. Our framework can naturally accommodate
such a requirement. In some situations, the “signal threshold” for
the magnitude of the surrogate data will be determinative, while
in others the significance threshold is. As one would expect, the
significance threshold is likely to play less of a role as the size of a
trial grows.

The extended framework allows for investigation of the impli-
cations of imperfect clinical evidence for the design of clinical trials,
and more generally, the optimal degree of investment into evidence
quality (Claxton et al., 2015). The question becomes, in the context
of the broader literature, the expected value of sample information
(Claxton et al., 2001; Claxton, 1999a; Eckermann and Willan, 2007;
Eckermann and Willan, 2008; Griffinetal.,2011),and speaks to how
much money to invest in growing the size of a trial, given the cost
of recruitment and the benefit of uncovering an improved signal. It
is possible that a higher-quality surrogate would be a cost-effective
substitute for a larger trial in some clinical situations. In any event,
as a practical matter, continued investigation into patient registries
could aid in the collection of both clinical benefits and safety events
for long-term post-approval data.

The economic implications have not been fully explored, even
as they have drawn an increasing amount of attention from
researchers in the clinical and basic sciences. We hope our study
represents a first step towards broader economic literature on sur-
rogate endpoints as a source of imperfect information about clinical
effects. Much remains to be done in order to evaluate how the

advent of surrogate endpoints is likely to influence the behavior
of key stakeholders in the healthcare system and how it should
inform health policy.
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