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Effects of Categorizing Continuous
Variables in Decision-Analytic Models

Tanya G. K. Bentley, PhD, Milton C. Weinstein, PhD, Karen M. Kuntz, ScD

Purpose. When using continuous predictor variables in
discrete-state Markov modeling, it is necessary to create
categories of risk and assume homogeneous disease risk
within categories, which may bias model outcomes. This
analysis assessed the tradeoffs between model bias and
complexity and/or data limitations when categorizing
continuous risk factors in Markov models. Methods. The
authors developed a generic Markov cohort model of dis-
ease, defining bias as the percentage change in life expec-
tancy gain from a hypothetical intervention when using 2
to 15 risk factor categories as compared with modeling the
risk factor as a continuous variable. They evaluated the
magnitude and sign of bias as a function of disease inci-
dence, disease-specific mortality, and relative difference
in risk among categories. Results. Bias was positive in the
base case, indicating that categorization overestimated

life expectancy gains. The bias approached zero as the
number of risk factor categories increased and did not
exceed 4% for any parameter combinations or numbers of
categories considered. For any given disease-specific mor-
tality and disease incidence, bias increased with relative
risk of disease. For any given relative risk, the relationship
between bias and parameters such as disease-specific
mortality or disease incidence was not always monotonic.
Conclusions. Under the assumption of a normally distrib-
uted risk factor and reasonable assumption regarding dis-
ease risk and moderate values for the relative risk of
disease given risk factor category, categorizing continu-
ously valued risk factors in Markov models is associated
with less than 4% absolute bias when at least 2 categories
are used. Key words: Markov models; Monte Carlo mod-
els; bias. (Med Decis Making 2009;29:549–556)

Markov models, or state transition models, can
be used to model the risk of disease or event

over time for a hypothetical population. Often, this
risk depends on certain predictor variables, many of
which are measured on a continuous scale. For
example, blood pressure is a risk factor for coronary
heart disease, folate intake can affect the risk of

neural tube defects (NTDs), and CD4 counts can pre-
dict the risk for opportunistic infections in people
living with HIV or AIDS. When using such continu-
ous predictor variables in a discrete-state Markov
model, it is necessary to create categories of risk. In
so doing, one makes assumptions about the homoge-
neity of persons residing within each categorical
health state, such that all persons face the same risk
of developing the disease or event of interest. To the
extent that the relationship between the predictor
variable and the disease outcome can be defined as
a continuous relationship, the assumption of homo-
geneity within risk category will result in biased
model output.

Kuntz and Goldie1 identified another bias related
to the assumption of homogeneity in Markov models.
They looked at the impact of an unobservable dichot-
omous factor that may affect disease risk and demon-
strated that failure to incorporate these differential
disease risks would bias model outcomes because the
model does not account for the fact that higher risk
individuals get disease more rapidly than do those
with lower risk. The magnitude of this ‘‘heterogene-
ity bias’’ was found to depend on disease risk and the
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relative risk of disease and could be as large as 50%.1

Similar conclusions were drawn in Zaric’s analytic
perspective of the issue.2

A bias can likewise occur when categorizing con-
tinuous predictor variables in Markov models.
Because individuals at the lower ends of each cate-
gory face a different disease risk than those at the
higher ends, they should be exiting the disease-free
Markov states at a faster or slower pace than those at
the higher ends of each category. The relative pro-
portion of higher risk individuals within each cate-
gory who consequently remain in the disease-free
states should decrease over time, whereas that of
lower risk individuals should increase. Because cat-
egorization does not specifically adjust for these
changes within groups over time, the model is
unable to account for this differential disease risk
and will produce biased results.

Categorizing continuous variables therefore invol-
ves tradeoffs between the effects of this bias and
model complexity and/or data limitations. For exam-
ple, if ‘‘too few’’ categories are used, there is potential
for biased results, yet ‘‘too many’’ categories may
increase model complexity unnecessarily or increase
uncertainty in model estimate due to sparse data. A
gold-standard model is one that can incorporate the
risk factor as a continuous variable such as with
Monte Carlo simulation.3 However, Monte Carlo mod-
els can be difficult to debug, entail long computing
time, and preclude probabilistic sensitivity analysis.3

To examine the tradeoffs between the magnitude of
bias v. model complexity and data limitations, we
used simple decision-analytic models in which we
considered the potential influence of categorizing con-
tinuous predictor variables on model outcomes, label-
ing the effect categorization bias. We compared
outcomes in the categorized model with those in the
‘‘gold standard’’ of the Monte Carlo and quantified the
degree and direction of bias as a function of key dis-
ease outcome parameters.

METHODS

We developed generic Markov cohort and Monte
Carlo simulation models to evaluate the tradeoffs
between choosing fewer v. more categories of a contin-
uously valued risk factor. In the cohort model, sub-
jects were distributed into disease-free states defined
by a categorized risk factor. From each disease-free
state, we assigned a unique probability of develop-
ing disease, based on the mean value with respect to
the distribution of the risk factor within the category.

Initially, we assumed that the disease probability was
a logistic function of the risk factor. We chose a logis-
tic function because it is bounded by 0 and 1 and is
the basis of risk functions fit via logistic regression
analysis. We also considered an assumption of linear
risk. Persons could die either from disease or from
other causes, and the outcome of interest was life
expectancy with v. without a hypothetical interven-
tion. We ran the model while varying the number of
risk factor categories from 2 to 15. The Monte Carlo
simulation model used the same underlying model
parameters and assumptions while modeling the risk
factor as a continuous variable.

Generic Model

Figure 1 shows the structure of the generic Mar-
kov cohort model, which begins with a cohort of
disease-free persons distributed into one of N
‘‘Welli’’ states, where i= 1 to N and N = 2, 3, 4, . . . ,
15. Each state is defined by a categorized, generic
risk factor. Individuals in category i face an annual
risk of disease (in the absence of intervention) based
on our assumption of the following logistic risk
function:

PrðDisease|category i, no interventionÞ=
1

1+ exp # a+ bmið Þð Þ ,
ð1Þ

......

Well1

Disease Death 

Subjects
distributed
by pre- or

post-
intervention
risk factor

level

Well2

Well3 

WellN 

p1 

p2

p3

 

pN

From any
well state 

pDie|Disease =
f(λage +λdis)  

...…
...

Disease-free 

pi = 1/[1 + exp(–(α +βµi))] 

Figure 1 Schematic diagram of the generic Markov cohort model,
where mi is the risk factor level associated with the mean disease
risk for each state, lage is the age-specific non-disease-related
mortality rate, and ldis is the disease-specific mortality rate.
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where a is a measure of overall disease risk, b char-
acterizes the relative difference in risk between risk
factor values, and mi is the risk factor level associ-
ated with the mean disease risk for category i. We
also varied this assumption in sensitivity analyses
to evaluate the following linear risk function:

PrðDisease|category i,

no interventionÞ= 0, if a+ bmi < 0

= 1, if a+ bmi > 1

= a+bmi, otherwise:

ð2Þ

We assumed a protective risk factor, such that b is
negative and higher risk factor values imply lower
disease risk. The primary difference among states is
disease risk, which we assumed to be homogeneous
within categories. Although the probability of devel-
oping disease depends on the risk factor category,
the overall disease risk for the initial cohort is the
same for all values of N and is equal to the weighted
average of the category-specific disease risks,
weighted by the proportions of the cohort starting in
each category.

Both the Markov cohort and the Monte Carlo simu-
lation models considered a population of 30-year-old
adults, for whom age-specific risk of all-cause mortal-
ity was based on data from the US Vital Statistics.4

We modeled the probability of dying from disease as
a function of the age-specific non-disease-related
mortality rate (lage) and the disease-specific mortality
rate (ldis) using the following function:

PrðDieÞ= 1# expð#ðlage + ldisÞÞ:

The goal of our analysis was to quantify the differ-
ence in cohort model results for varying values of N
compared to those from the Monte Carlo model,
where the risk factor was modeled as a continuous
variable. All cohort models were run using Treeage
Pro (Williamstown, MA) software, and the Monte
Carlo model used C programming.

We assumed that the risk factor values were dis-
tributed normally with a mean of 100 and a standard
deviation of 10 and that an individual’s risk factor
level did not change with age. The choice of parame-
ter values for the normal distribution was fairly arbi-
trary but does not influence our analysis because
one can transform this distribution into any other
normal distribution with a different mean and vari-
ance. In the categorized Markov cohort model, we
defined the ranges for the N categories of risk by
assuming that each category had equal probability:

Category i= i # 1

N

! "
%ile,

i

N

! "
%ile

#
, for i= 1, 2, . . . , N ,

$

where the percentile (%ile) refers to the percentile
of the risk factor distribution. Individuals were
assigned a constant probability of disease based on
their category’s mean risk, calculated using the asso-
ciated risk factor level mi and the a and b parameters
in the risk function (equation (1) or (2)). When using
a linear function of disease risk, this average proba-
bility of disease for each category is equal to the
value of the risk function at the category’s average
risk factor level.

We estimated life expectancy gains associated
with a hypothetical intervention that decreases the
risk of disease and compared our results varying the
number of risk factor categories. Bias was defined as
the percentage change in life expectancy gain
(LEGain) when using N categories (N = 2–15) of risk
factor to that when using the Monte Carlo (MC) gold
standard:

Bias=
LEGainCategðNÞ # LEGainMC

LEGainMC
:

A positive bias would imply that fewer categories
overestimated the life expectancy gains with inter-
vention compared with more categories, whereas
a negative bias would indicate that these gains were
underestimated.

We assumed that the hypothetical intervention
reduced disease risk by a percentage j, a method
that is consistent with those used in prior heteroge-
neity bias analyses.1,2 To incorporate the interven-
tion, the probability of disease for the logistic (base
case) and linear risk functions was as follows:

Logistic:

PrðDisease|category i,

interventionÞ= 1

1+ exp # a+ bmið Þð Þ ∗ 1# jð Þ,

Linear:

PrðDisease|category i, interventionÞ= a+ bmið Þ∗ 1# jð Þ,

where j equaled 0 with no intervention and 10%
with intervention.

We evaluated the predicted life expectancy
benefits—and thus the magnitude and sign of
bias—as a function of disease risk, disease-specific
mortality, and relative difference in risk between 2
equal categories (relative risk [RR]). Table 1 shows
our base case parameter values and assumptions as
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well as the ranges considered for sensitivity analy-
ses. Both disease risk and RR were dependent on
the underlying risk factor distribution (normal) and
disease risk function (logistic or linear) and were
thus derived by varying the risk function para-
meters a and b to obtain the desired disease risk
and RR values. Note that the parameter values of
the normal distribution do not influence the analy-
sis because a change in these parameters would
simply affect the values of a and b but would not
alter the model estimates for the annual disease risk
or RR. To provide a clearer interpretation of b, we
present RR as the ratio of the probabilities of disease
for the high- v. low-risk groups in the 2-category
model with a specified set of risk function para-
meters. For example, if annual disease risk is equal
to 3% and RR is equal to 2.0, then this would imply
that the low-risk group has an annual disease risk
of 2% and the high-risk group has an annual dis-
ease risk of 4%.

Worked Example

We evaluated the bias in a simple worked example
of using an antihypertensive agent to lower diastolic
blood pressure (DBP) and reduce the risk of coronary
heart disease (CHD). We derived the DBP distribution
from a US population of 65- to 74-year-old diabetic,
smoking men, based on 1976–1980 data from the
National Health and Nutrition Examination Surveys.5

We fit a normal distribution with mean of 83 and

standard deviation of 11.5. Annual CHD risk was pre-
dicted using published risk equations of a parametric
statistical model from the Framingham Heart Study6

for a cohort of 70-year-old diabetic, smoking men
with average cholesterol levels. Calculation details
for the prediction coefficients are described in Ander-
son and others.6 CHD risks were based on the mean
value with respect to the DBP distribution within
each of 1, 2, and 10 categories. We evaluated life ex-
pectancy gains from a hypothetical intervention that
reduced DBP by 15 points and used the 10-category
model as a proxy for the gold standard.

RESULTS

Table 2 shows the results of our base case analy-
sis. Given an average annual disease risk of 3%, RR
of 2, annual disease-specific mortality of 3%, and an
intervention that decreases risk by 10%, the model
predicted that the intervention would increase life
expectancy by just over 8 months. This benefit ran-
ged from 8 months when the risk factor was mod-
eled as a continuous variable in the Monte Carlo
simulation to 8 months plus 1 week when only 2
categories were used. Comparing projected gains
with the use of 2 to 15 risk factor categories with
those when using a continuous risk factor, the cate-
gorization bias was 2.4% for the 2-category model
and 0.05% for 15 categories. In the base case, the
bias was always positive, approached 0 as N increa-
sed, and never exceeded 4% when the risk factor
was categorized or 7.5% when pooled (e.g., 1
category).

We evaluated the degree and sign of bias as a func-
tion of average annual disease risk, RR between 2
categories, disease-specific mortality, and number
of categories (Figure 2). For any levels of disease-
specific mortality and disease risk, bias increased
with RR. For example, in our base case of disease-
specific mortality and disease risk both at 3%, the 2-
category bias was 0.9%, 2.4%, and 3.9% for RRs of
1.5, 2, and 2.5, respectively. For any given RR, the
relationship between bias and disease risk was not
always monotonic. For example, for all combinations
of RR and disease-specific mortality, the 2-category
bias increased with disease risks of 1% and 3% and
then decreased when risk increased further to 5%.
Holding all other parameters constant, the magnitude
of bias was not sensitive to disease-specific mortality.

Figure 3 shows bias given a linear function of dis-
ease risk, using the base case model parameters and
assumptions and using the 15-category model as

Table 1 Model Parameters and Assumptions

Variable
Base Case
Estimate Range

Age 30 30–80
Disease risk function Logistic Linear
Underlying risk factor
distribution

Normal
[100, 10]

—

Annual disease risk
without intervention, %a

3 1–12

Relative risk of diseaseb 2 1.2–2.5
Disease-specific
mortality rate (ldis)

0.03 0.01–0.10

Treatment effect (j), % 10 1–50

a. Represents the average disease risk for a population with the speci-
fied risk factor distribution and is derived from risk function using
values of a and b such that we get a specified disease risk and relative
risk of disease.
b. Represents the ratio of high-risk v. low-risk categories in the 2-category
model and is derived from the value of b by dividing the overall risk of
the high-risk group by that of the low-risk group to achieve the desired
relative risk value.
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a proxy for the gold standard in defining bias (note:
the Monte Carlo model is very computer time inten-
sive). Given an average disease risk of 3%, an inter-
vention that decreased risk by 10%, and an RR of 2,
the linear model predicted the intervention to in-
crease life expectancy by over a year. The bias was
highest for 2 categories at 3.2% and increased with
higher levels of disease risk. We also used the linear
model with a 15-category model as a proxy for the
gold standard to further explore the relationship
between bias and disease risk, shown in Figure 4 for
a constant RR of 1.2. When considering a wider
range of disease risk values, we found that magni-
tude of bias did increase with disease risks of up to
3%, at which point bias decreased and eventually
became increasingly negative at disease risks of
greater than 8%.

When we varied other parameters using the logis-
tic model, the range of categorization bias by num-
ber of categories did not change substantially. For
treatment efficacy of 1% to 50% (from a base case
value of 10%), the bias decreased with higher effi-
cacy but changed minimally—still ranging between
2.2% and 0.02% (2–15 categories, respectively) from
a base case range of 2.4% to 0.05%. For 30- to 80-
year-olds, the bias decreased with age—and therefore
with higher rates of all-cause mortality—ranging from

1% to 0.005% for 2 to 15 categories in people aged
80+ years.

In our worked example, for a US population of
65- to 74-year-old smoking, diabetic men (1976–
1980), an average annual disease probability of
2.03%, an annual disease-specific mortality of 3%,
and an intervention that decreases DBP by 15 points
among patients with DBP ≥ 90, the model predicted
that the intervention would increase life expectancy
by approximately 2 weeks. Comparing projected
gains with the use of 1 to 2 DBP categories with
those when using a 10-category model, the categori-
zation bias was 6.2% for the 1-category model and
3.8% for 2 categories. As with the results from our
base case analysis, the bias was always positive,
approached 0 as N increased, and was overall very
small for any number of categories.

DISCUSSION

We evaluated the tradeoffs involved in categoriz-
ing continuous risk factors in decision-analytic mod-
eling. Although one of the benefits of evaluating
interventions with Markov cohort models is the abil-
ity to simulate disease risk over time, to do so, it is
necessary to categorize model inputs and thus assume
homogeneous risk within each category. Model out-
comes may consequently be biased because of the
changing distribution of risk across categories over
time, as the higher risk individuals within each cate-
gory progress to disease more rapidly than their
lower risk counterparts. Knowing the degree to
which such a bias might affect results for a particular
disease and intervention can be important for mode-
lers when making categorization decisions. This anal-
ysis provides a methodological contribution to that
knowledge beyond that from previous research on
heterogeneity bias1,2 by exploring the impact that
assumptions of homogeneity within risk groups may
have on model outcomes when more than 2 groups
are considered, when using a continuously valued
risk factor as a gold standard for defining bias, and
when bias challenges a priori expectations that it
would be positive because of the heterogeneity effect.1

We evaluated the degree and direction of categori-
zation bias in simplified and generic Markov cohort
and Monte Carlo simulation models and as a func-
tion of overall annual disease risk, disease-specific
mortality, risk factor effect, and number of risk fac-
tor categories. These parameters were considered im-
portant so that modelers can determine the impact
of categorization decisions for varying degrees of

Table 2 Life Expectancy Gain from Hypothetical
Intervention and Percent Bias

by Number of Risk Factor Categories

Life Expectancy, y

# Categories
No

Intervention Intervention
Months
Gained % Bias

1 (pooled) 40.56 41.07 8.61 7.50
2 40.66 41.35 8.20 2.42
3 40.74 41.41 8.10 1.25
4 40.77 41.44 8.07 0.77
5 40.79 41.46 8.05 0.52
6 40.80 41.47 8.04 0.38
7 40.81 41.48 8.03 0.28
8 40.81 41.48 8.02 0.22
9 40.82 41.49 8.02 0.17
10 40.82 41.49 8.02 0.14
11 40.82 41.49 8.01 0.11
12 40.83 41.49 8.01 0.09
13 40.83 41.49 8.01 0.07
14 40.83 41.50 8.01 0.06
15 40.83 41.50 8.01 0.05
MC 40.84 41.51 8.01 0

MC, Monte Carlo model result.
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Figure 2 Categorization bias for varying disease risks (1%, 3%, 5%), relative risks between 2 categories (1.5, 2, 2.5), number of risk fac-
tor categories (2–15), and disease-specific mortality (1%, 3% 10%), using the model with the continuously valued risk factor as the gold
standard.
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disease prevalence and mortality, as well as for risk
factors of substantial or negligible importance. Cate-
gorization bias was defined as the percentage change
in life expectancy gain when using 2 to 15 categories
of risk factor compared with that when using
a Monte Carlo simulation that modeled the risk fac-
tor as a continuous variable. A positive bias there-
fore indicates that categorization overestimates the
benefits gained from the intervention, whereas a neg-
ative bias indicates an underestimation. For average
disease risk of 3%, disease-specific mortality of
0.03, and an intervention that reduces disease risk
by 10%, the bias was only 3.9% even when the risk
factor effect was large, and it never exceeded 4% for
any parameter combinations evaluated. With our
base case assumptions, the bias was always positive
and consistently remained at less than 1.5% when
at least 3 categories were used. Although these base
case assumptions may be somewhat restrictive, the
results of our worked example of reducing CHD risk
through a blood pressure intervention indicate that
even when using more general forms of such para-
meters, the bias still remained at less than 4% when
at least 2 categories were used. Similarly, when we
evaluated bias in a sensitivity analysis using a log-
normal distribution, results were very similar to
those in the base case, with bias being positive,
approaching 0 with an increasing number of cate-
gories, and not exceeding 1% with the use of at least
3 categories. The magnitude of categorization bias is

thus relatively small, given that previous research
indicates a range of 50% to 75% for heterogeneity
bias.1

We found that when disease risk is sufficiently
high and relative risk is small, the categorization
bias can be negative (Figure 4). In other words, using
fewer categories can result in an underestimation of
the life expectancy gains under these conditions.
This is opposite to the expected effect induced by an
overestimation of disease risk—and risk reduction
due to intervention—when fewer categories are used
and has been previously reported in the 2-category
v. 1-category setting by Zaric.2 The explanation for
this finding is that the overestimation of disease risk
(with fewer categories) results in an underestima-
tion of life expectancy with or without intervention.
The negative bias associated with underestimation
of life expectancy (and life expectancy gain) com-
petes with the positive bias associated with overesti-
mating the effect of the intervention on disease risk
and is most prominent when overall disease risk is
high. With a very high risk of disease, most of the
cohort gets the disease within a short period of time,
and thus the disease prevention aspect of the inter-
vention is outweighed by the reduction of life expec-
tancy for the cohort with slightly higher disease risk
(i.e., the cohort in the model with fewer categories).
This effect also explains the nonsequential ordering
of bias in relation to disease risk, as bias increases
with risk up to a threshold, at which point the

0%
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3%

4%

1411852
# Categories

%
 B

ia
s

1% Risk of Disease
3% Risk of Disease
5% Risk of Disease

Figure 3 Categorization bias with a linear risk function for vary-
ing disease risk and number of risk factor categories, using the
15-category model as comparator, a disease-specific mortality of
3%, and relative risk between 2 categories of 2.
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Figure 4 Categorization bias with the linear risk function using
2, 3, and 5 risk factor categories as compared with 15, for disease
risks of 0.5% to 12%, a disease-specific mortality of 10%, and rel-
ative risk between 2 categories of 1.15.
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negative influence begins to dominate the positive
and causes bias to subsequently decrease with in-
creased disease risk.

The results of this analysis must be considered in
light of its limitations. To most clearly demonstrate
the effects of categorizing continuous variables on
model outcomes, we used generic disease preven-
tion models and made simplifying assumptions
about the relationship between risk factor and dis-
ease and about methods for modeling interventions.
Although we evaluated results for both logistic and
linear functions of disease risk, these may not be
clinically accurate, as the nature of such dose-
response relationships between risk factor and dis-
ease may be highly irregular, unpredictable, and/or
nonparametric.

Similarly, our assumption of a normal underlying
risk factor distribution may not accurately represent
true risk factor levels in a population. For example,
folate intake—a predictor variable for neural tube
defect–affected pregnancies as well as possibly for
colon cancer and heart disease7-18—has been shown
to have a lognormal population distribution.19,20

Modeling folate intake as a normal distribution
could affect model outcomes beyond the effects of
categorization or heterogeneity bias, such as by
changing the proportions of the population esti-
mated to be within disease risk categories. Our anal-
ysis also only considered risk factors that do not
change with age—which may not be accurate in
clinical situations involving such risk factors as
body weight or diet—and that are categorized by
assigning equal probability to each category.

Markov state transition models offer a valuable
method of evaluating health outcomes and disease
prevention interventions, yet their very nature re-
quires the categorization of continuously valued pre-
dictor variables and the assumption of homogeneous
risk within each health state. Although our analysis
indicates that the magnitude of the consequential cat-
egorization bias is small and somewhat predictable,
modelers should consider the potential for error when
designing such models, and researchers and policy
makers need to be cognizant of these issues in inter-
preting model results.

REFERENCES

1. Kuntz KM, Goldie SJ. Assessing the sensitivity of decision-
analytic results to unobserved markers of risk: defining the effects
of heterogeneity bias. Med Decis Making. 2002;22:218–27.

2. Zaric GS. The impact of ignoring population heterogeneity
when markov models are used in cost-effectiveness analysis. Med
Decis Making. 2003;23:379–96.

3. Gold MR, Siegel JE, Russell LB, Weinstein MC, eds. Cost-
Effectiveness in Health and Medicine. New York: Oxford Univer-
sity Press; 1996.

4. Arias E. United States life tables, 2001. Natl Vital Stat Rep.
2004;53:1–38.

5. Drizd T, Dannenberg AL, Engel A. Blood pressure levels in per-
sons 18–74 years of age in 1976-80, and trends in blood pressure
from 1960 to 1980 in the United States. Vital Health Stat 11. 1986;
(234):1–68.

6. Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovas-
cular disease risk profiles. Am Heart J. 1991;121:293–8.

7. Abby SL, Harris IM, Harris KM. Homocysteine and cardiovas-
cular disease. J Am Board Fam Pract. 1998;11:391–8.

8. Giovannucci E, Rimm EB, Ascherio A, Stampfer MJ, Colditz
GA, Willett WC. Alcohol, low-methionine: low-folate diets, and
risk of colon cancer in men. J Natl Cancer Inst. 1995;87:265–73.

9. Giovannucci E, Stampfer MJ, Colditz GA, et al. Multivitamin
use, folate, and colon cancer in women in the Nurses’ Health
Study. Ann Intern Med. 1998;129:517–24.

10. Glynn SA, Albanes D, Pietinen P, et al. Colorectal cancer and
folate status: a nested case-control study among male smokers.
Cancer Epidemiol Biomarkers Prev. 1996;5:487–94.

11. Freudenheim JL, Graham S, Marshall JR, Haughey BP, Chole-
winski S, Wilkinson G. Folate intake and carcinogenesis of the
colon and rectum. Int J Epidemiol. 1991;20:368–74.

12. Kato I, Dnistrian AM, Schwartz M, et al. Serum folate, homo-
cysteine and colorectal cancer risk in women: a nested case-
control study. Br J Cancer. 1999;79:1917–22.

13. Morris CD, Carson S. Routine vitamin supplementation to
prevent cardiovascular disease: a summary of the evidence for
the U.S. Preventive Services Task Force. Ann Intern Med. 2003;
139:56–70.

14. Rimm EB, Willett WC, Hu FB, et al. Folate and vitamin B6
from diet and supplements in relation to risk of coronary heart
disease among women. JAMA. 1998;279:359–64.

15. Su LJ, Arab L. Nutritional status of folate and colon cancer
risk: evidence from NHANES I epidemiologic follow-up study.
Ann Epidemiol. 2001;11:65–72.

16. Thun MJ, Calle EE, Namboodiri MM, et al. Risk factors for
fatal colon cancer in a large prospective study. J Natl Cancer Inst.
1992;84:1491–500.

17. White E, Shannon JS, Patterson RE. Relationship between
vitamin and calcium supplement use and colon cancer. Cancer
Epidemiol Biomarkers Prev. 1997;6:769–74.

18. Willett WC. Diet, nutrition, and avoidable cancer. Environ
Health Perspect. 1995;103:165–70.

19. Bentley TGK, Willett W, Weinstein M, Kuntz KM. Population-
level changes in folate intake by age, gender, and race/ethnicity
after folic acid fortification. Am J Public Health. 2006;96:2040–7.

20. Lewis CJ, Crane NT, Wilson DB, Yetley EA. Estimated folate
intakes: data updated to reflect food fortification, increased bio-
availability, and dietary supplement use. Am J Clin Nutr. 1999;
70:198–207.

556 • MEDICAL DECISION MAKING/SEP–OCT 2009

BENTLEY, WEINSTEIN, KUNTZ

 at UCLA on March 23, 2011mdm.sagepub.comDownloaded from 


